International Journal of Engineering Research and General Science Volume 3, Issue 1, January-February, 2015
ISSN 2091-2730

FPGA BASED CONTROLLER CARD FOR DATA ACQUISITION SYSTEM

Augustine Abraham, Supriya Unnikrishnan K, Sudheesh Madhavan, Hema M

PG Scholar, Dept. of ECE, Toc H Institute of Science and Technology, augustinepanayil@hotmail.com

Abstract— Data acquisition is the process of measuring real world physical conditions and converting it into digital numeric values.
A typical data acquisition system consists of (i) Sensors that convert physical parameters to electrical signals, (ii) Signal conditioning
circuitry, (iii) Analog to Digital Convertors [1]. For Sound Navigation and Ranging (SONAR) front end application specific data
acquisition systems, a controller card is required which controls the transmission of data that is received. In this paper, the focus is for
an efficient controller card development by using the Virtex — 5 FPGA (Field Programmable Gate Array). FPGAs have soft IPs
(Intellectual Property) and hard IPs that can be used on demand. Here the controller card is based on a soft processor microblaze. The
use of soft processor reduces the complexity of developing the controller card with an FPGA and an external processor as a controller
since the soft processor exists on the same FPGA. This creates a highly robust and reliable system.

Keywords— FPGA; Microblaze; Intellectual Property (IP); SONAR; Human Machine Interface (HMI); Xilinx Platform Studio
(XPS); Software Development Kit (SDK)

INTRODUCTION

The data acquisition system receives the data from sensors and is converted to digital form by the Analog to Digital (ADC) cards. The
data in digital form is fed from ADC cards to the controller card. Controller card has two regions, an embedded processor and a
transceiver hardware section. Embedded processor communicates with the HMI through which necessary control data is taken.
Depending on the instructions given by the HMI to the embedded processor, data received from ADC cards are routed to required
destination. VirtexX5SLXT FPGAs have microblaze soft processors and peripherals like UART (Universal Asynchronous
Receiver/Transmitter), Ethernet, DDR2 SDRAM (Double Data Rate Synchronous Dynamic Random-Access Memory), Flash etc. as
soft IPs. Microblaze is a 32 bit Reduced Instruction Set Computing (RISC) processor [5]. The peripherals can be instantiated based on
the requirement to create an embedded system inside the FPGA. Here, an embedded soft processor based controller is developed for
SONAR front end application.

METHODOLOGY

ML505 evaluation board based on Virtex 5 FPGA of Xilinx is used for the system development. Block diagram of controller card is
shown in Figure -1. The transceiver takes the configuration data from the block RAM (Random Access Memory) which is written by
the soft processor. This paper focuses on development of microblaze soft processor based controller.

ETHERNET
RECEIVER =
NF <7 (=

@ SOFT $ BLOCK

UART o PROCESSOR | RAM

<7 7

< 1t

FLASH ¥

-

TRANSMITTER

4

Figure — 1: Block diagram of controller card

Hardware Design

The embedded controller hardware is developed in XPS by instantiating the microblaze soft processor with peripherals UART,
Ethernet, Flash and a custom memory peripheral generated from core generator. This custom memory peripheral is the bridge between
the transceiver and the embedded processor.

960 www.ijergs.org

International Journal of Engineering Research and General Science Volume 3, Issue 1, January-February, 2015

ISSN 2091-2730

The microblaze processor is instantiated with clock 125MHz and local memory of 64KB. UART and Ethernet forms the Human
Machine Interface. The configuration details of the system and any debugging information are shown on the PC through the Tera
Term/ Hyper Terminal using the UART 16550 through the RS232 cable. The Ethernet configured was a hard Ethernet MAC which
could support speed up to 1Gps and is configured in Gigabit Media Independent Interface (GMII) mode with required jumper settings
[6]. The custom Block RAM was made with 32 bit width and 1024 bit depth from the IP Core and the custom Block RAM (BRAM)
was added by using the IP — IC (Intellectual Property — Inter-Connect) interface. It was done so because the BRAM must be common
to hardware transceiver and the embedded controller. The control data was written to BRAM through the Ethernet and based upon the
control data the transceiver would work.

The microblaze soft processor accesses its peripherals using Processor Local Bus [8]. Hence a Processor Local Bus top module is
written over the custom memory in order to import the memory peripheral to microblaze processor using the IP — IC interface
technology. Intel JS28F256P30T95 BPI flash is used to take back up of last configuration data in BRAM [4].

Software Design

The hardware design is exported on to the SDK to start with the embedded programming. Upon this hardware, a Board Support
Package is made. The BSP was made such that the microblaze processor was loaded with Xilkernel OS [3]. Xilkernel is a small,
robust, and modular kernel. It is highly integrated with the Platform Studio framework and is a free software library that is available
with the Xilinx Embedded Development Kit (EDK) [9]. It allows a very high degree of customization, letting users tailor the kernel to
an optimal level both in terms of size and functionality. To this BSP IwlIP and xilflash are added for the Ethernet and flash support
[11]. Since the design is based on Xilkernel OS, the IwlP is configured in socket mode [7]. The main advantage of Xilkernel OS is
multithreading functionality.

Software design can be divided into three sections. The first section includes the startup procedure to initialize the UART along with a
programming to assign specific IP address and MAC address to the board. The second section does the reception of packet and
extracting the data to write into the BRAM. The third section does the initialization of flash and unlocking the specific memory areas
to write the same data from BRAM to flash.

IMPLEMENTATION

The hardware implemented is shown in Figure — 2. The microblaze processor is instantiated with peripherals UART, Ethernet, DDR2,
Flash and custom memory core. It could be seen that the microblaze processor communicates with the peripherals using the Processor
Local Bus (PLB) and Local Memory Bus (LMB) is used to access the local memory Tools used is Xilinx 13.3 ISE/EDK, Lab VIEW,
Wire shark and Tera Term.

L1 3| Dus interfaces Pocts Addresses

- I'i Name Bus Neme P Type IP Versson
— imd % Imb_v10 2008
o dmbd Y Imb_v10 2005
o - md_plb P Wb 1054
3 d p— & microbloze 0 1 microblaze 8.20.a
-t i Imb_brom Y bram_block 100
9o Yt i dimb_cntly vr Imb_bram_if_cntir 3000
RS 1| @ ilmb_cntlr 3¢ Imb_braem__cntlr 3000
o ! i FLASH 1 xps_mch_eme 30
O p———+— | # DORZ SORAM Y mpmx 6052
o1 3 mdm 0 Y mdm 2005
o1 3 xps_intc 0 YO ¥ps_inkc 20
U s/ memorytop 0 % memorytop 1002
o & Hard_Ether. D xps_ll_ternac 2035
9 3 xps_timer 0 SO xps_tener 1022
9 $ R323Z2 Uert T ps_wartl6550 3002
clock_gener. ¢ clock_generator 4032
proc_sys_re YO proc_sys_reset 3002

Figure — 2: XPS view of the hardware
Figure — 3 shows the addresses mapped to each of the microblaze peripherals. The memory added is assigned an address space of 1K
and the starting address is 0x89840000. The Flash address starts at 0x8C000000 and has a size of 32M.

961 www.ijergs.org

International Journal of Engineering Research and General Science Volume 3, Issue 1, January-February, 2015
ISSN 2091-2730

@ | Bus Interfaces | Ports Addresses

Instance Base Name Base Address High Address Size Bus Interface(s) Bus Name
microblaze 0°'s Address Map

dimb_cntle C_BASEADOR 0x00000000 OxDOOOFFFF (218 w ! SIMB dimb
dmb,_cnth C_BASEADDR 0x00000000 0x0000FFFF 64K - SLMB ilmb
xps_intc 0 C_BASEADDR 0x81800000 0x8180FFFF 64K v SPLE mb_pib
xps_tmer 0 C_BASEADDR 0x83C00000 0xB3COFFFF 64K - SPLE mb_pib
RS232_ Vant 1 C_BASEADDR 0x83E00000 OXB3EOFFFF 64K - SPLE mb_pib
mdm 0 C_BASEADOR 0x84400000 OxBA40FFFF 18 v SPLE mb_pib
DDR2_SDRAM C_SOMA_CTRL _BASEADDR 0xB4600000 0xBA60FFFF 64K ! SOMA_CTRLL mb_plb
Haed_Ethemet MAC C_BASEADOR 0x87000000 0xB8707FFFF S12 v SPLE mb_pld
memorytop 0 C_BASEADDR 0x696840000 0xB98403FF 1K ~ SPLB mb_pib
FLASH C_MEMD_BASEADDR 0xBCO00000 OXBOFFFFFF M v SPLE mb_pib
DDR2_SORAM C_MPMC_BASEADDR 0x90000000 OXSFFFFFFF 56M | SPLE:SOMA LLT mb_pibiHard_EL.

Figure — 3: Address mapped to each peripherals

This implemented hardware is ported to SDK tool for writing the embedded code. Figure — 4 shows the SDK view of the system
developed.

[75 Project Explorer 22 = <~}=={‘.'> = =8

=% embd_application_0
E embd_contrl_hw_platForm
[wilkernel_bsp_0

Figure — 4: SDK view of the system

RESULTS

An embedded soft processor controller was developed on ML505 board for SONAR front end application and the coding was done in
embedded C [12]. The protocol supports provided include Internet Protocol (IP), Internet Control Message Protocol (ICMP), User
Datagram Protocol (UDP), Transmission Control Protocol (TCP), and Internet Group Message Protocol (IGMP) [10]. The system was
configured with IP address 192.168.1.100 [2]. The ping command was used to verify the ICMP protocol. TCP protocol was verified by
checking the correctness of data by sending it back to PC. A UDP packet was send from lab view and that data was extracted and
written on to the custom memory peripheral.

length Actual End [f-1]

]1024]o
Expected End [f-1] Finished Late? [f-1]
0 @

text

0000 0101 0000 0102 0000 0103 0000 0104 0000 0105 0000 0106 0000 0107 0000 0108 0000 0109
0000 0104 0000 0108 0000 010C 0000 0104 0000 010E 0000 010F 0000 0110 0000 0111 0000
0112 0000 0113 0000 0114 0000 0115 0000 0116 0000 0117 0000 0118 0000 0119 0000 011A
0000 011B 0000 011C 0000 0110 0000 O11E 0000 011F 0000 0120 0000 0121 0000 0122 0000
0123 0000 0124 0000 0125 0000 0126 0000 0127 0000 0128 0000 0129 0000 012A 0000 012B
0000 012C 0000 0120 0000 012E 0000 012F 0000 0130 0000 0131 0000 0132 0000 0133 0000
(0134 0000 0135 0000 0136 0000 0137 0000 0138 0000 0139 0000 013A 0000 013B 0000 013C
0000 0130 0000 013E 0000 013F 0000 0140 0000 0141 0000 0142 0000 01432 0000 0144 0000
0145 0000 0146 0000 0147 0000 0143 0000 0149 0000 014A 0000 0148 0000 014C 0000 014D
(0000 014E 0000 014F 0000 0150 0000 0151 0000 0152 0000 0153 0000 0154 0000 0155 0000 0156
0000 0157 0000 0158 0000 0153 0000 015A 0000 0158 0000 015C 0000 015D 0000 015E 0000
015F 0000 0160 0000 0161 0000 0162 0000 0163 0000 0164 0000 0165 0000 0166 0000 0167 0000
0168 0000 0163 0000 0164 0000 0168 0000 016C 0000 016D 0000 016E 0000 016F 0000 0170
0000 0171 0000 0172 0000 0173 0000 0174 0000 0175 0000 0176 0000 0177 0000 01748 0000 0179
0000 0174 0000 0178 0000 017C 0000 017D 0000 017E 0000 017F 0000 0180 0000 0181 0000
(0182 0000 0182 0000 0184 0000 0185 0000 0186 0000 0187 0000 0188 0000 0189 0000 018A
0000 018E 0000 018C 0000 0130 0000 O18E 0000 018F 0000 0190 0000 0191 0000 0192 0000
10193 0000 0194 0000 0195 0000 0196 0000 0197 0000 0198 0000 0199 0000 019A 0000 0198

Figure — 5: Lab view providing inputs

The UART output in Tera Term shows the board configuration details initially. Tera Term screen shot is shown in Figure — 6. Once the
UDP packet is received by the system, the received number of bytes and the data written to each memory location is displayed which
validates the input data. After the completion of data writing to the custom memory, back up of same data is taken by writing the same
to flash memory.

962 www.ijergs.org

International Journal of Engineering Research and General Science Volume 3, Issue 1, January-February, 2015
ISSN 2091-2730

alue 1n Memory_Hddress S784U370 = BEW
CONFIGURATION DETAILS alue in Memory_fiddress 8984HW388 = Ei
alue in Memory_Address 89848384 = E2
oard [P: 192_168.1.188 aiue in nemory:gggress gggigggg = Ei
: . . . alue in Memory PEES =
;ggﬁilj : 255.255.255.08 alue in Memory_Address 89848398 - E5
21ue in Memory hddrcos 89540398 - E7
—_ 2 2 - alue 1n EmOry ress =
uto negotiated link speed: 1088 alue in Memory Address 8984@39C - E8
o s 15 ERHATS e - o
- — alue 1n emory. ress =
ai“" in :e"'““y—"gg“e“ gggggggg = % alue in Memory_Address 8984@3A8 - EB
alue in Memory_fddress = alue in Memory_fAddress 8984B3AC = EC
alue in Memory Address 89340008 = 3 alue in Memory_Address 8984@3B@ = ED
alue in Memory Address 8984806C = 4 alue in Memory_fddress 8984@3B4 = EE
alue in Memory_Address 8978400180 = 5 alue in Memory_Address 898483B8 = EF
alue in Memory_Address 89848014 = 6 alue in Memory_Address 8984B3BC = F@
alue in Memory_Address 89848818 = 7 alue in Memory_ Address 898483CB = Fi
alue in Memory_Address 8984881C = 8 alue in Memory_Address 898483C4 = F2
alue in Memory_Address 89848828 = 9 alue in Memory_Address 8984B3CB = F3
alue in Memory_fAddress 89848824 = A alue in Memory_Address 8984B3CC = F4
alue in Memory_fiddress 89840028 = B alue in Memory_Address 8984@3DB = F5
alue in Memory_fddress B984882C = C alue in Memory Address 898483D4 = F6
alue in Memory_Address 89848838 = A alue in Memory Address 898483D8 = F?7
alue in Memory_fAddress 89848034 = E alue in Memory_Address 878483DC = F8
Alie in Honery it 89030050 © gl i Jo el
eilepinghencyySAddres sEBIRI0NI0 RS0 2lue in Memors Addross 8284M3ES - FB
pluclinghencrySiddyes s QeI SN0 alue in Memomy Address 8284M3EC - FC
alue in Memory fiddress 89840844 - 12 alue in Memory Addross 8984M3FG - FD
alue in Memory Address 89840048 = 13 alue in Memory Addross 8284B3F4 - FE
adue dn ne"'““yzgg‘d“‘“s N aonac -1 alue in Memory_Addvess 8984A3F8 = FF
alue 1n emory ress = i =
2lue i“ Memory Address 89848854 = 16 Value in Memory_Address 8%784B3FC 188
SHiE 1 penbe R et - 42
alue 1n eEmory ress =
alue in Hemory_fAddress 89848868 = 19 success XFlash_Initialize
alue in Memory_fAddress 89848864 = in success HFlash_Reset
alue in Memory_Address 89848868 = 1B success WFlash_Unlock
alue in Memory_fiddress 8984886C = 10 success AFlash_Erase
alue in Memorvy_Address 89848878 = 1D success HFlash _Urite
alue in Memory_Address 89848874 = 1E Ualue in Memory_fAddress 8CB100PA = 1
alue in Memory_Address 89840878 = 1F VUalue in Memory Address 8C@100B4 = 2
alue in Memory_Address 8984807C = 28 Ualue in Memory Address S8CH1G0GAR = 3
i = Value in Memory_Address BCO166BC = 4
alue in Memory_Addresz 89840888 21 1 =
alue in Memory_Address 8984@@84 = 22 33%“ in nemw—"'gg*‘e“ gggiggig = g
alue in Memory_Address B9840088 = 23 Ualue 1n Hemory:gddress soalanls - 9
alue in Memory_Address 89848088C = 24 Ualue in Hemory_nddress SCALAEIC - 8
alue in Memory_ Address 898408G9@ = 25 Ualue in Momers Addrcss 8CA1POZ6 - 9
pluegingtiencrySAddnes SEnIsI0nT.AR 20 Value in Memory Address 8CB18@24 - A
alue in Memory fAddress 8984838 - 27 Ualue in Memory_Address 8CA1AG28 = B
alue in Memory Address 8984@QA%9C = 28 Ualue in Memory_fddress 8C@1B02C = C
alue in Memory_fiddress 898480A0 - 29 Ualue in Memory_Address 8CA1AA3A = A
alue in Memory_Address 898488714 = 24 Ualue in Memory_Address 8C@10@34 = E
alue in Memory_Address 89784B8A8 = 2B Ualue in Memory_Address 8CB100838 = F

Figure — 6: Display in Tera Term
Wire shark was used as a monitoring tool which showed the data sent and the protocol followed by the data. It is shown in Figure — 7.

No. . Time Source Destination Protecel Info
% £, 095090 SU.UL.IC.PU.La. 10 o vauLas L AR WIG 163 LYE.LUO.L.LUUI 1E11 LYL.LUG.L.L
25 2.548610 Xilinx_00:01:02 90:bl:1c:9d:2a:f8 ARP 192.168.1.100 is at 00:0a:35:00:01:02
2 102.168.1.1 192.168.1.100 Source port: 52002 Destination port: 52002
27 2.550702 192.168.1.1 192.168.1. 255 NENS Name guery NB ISATAP<00>
28 3.024552 fe80::ble8:d5c:f777:3 ffo2::1:2 DHCPVE Solicit
29 3.300499 192.168.1.1 192.168.1. 255 NENS Name query NB ISATAP<00=
30 3.413685 192.168.1.1 239.255.255.250 55DP M-SEARCH * HTTP/1.1
31 4.050730 192.168.1.1 192.168.1.255 NENS Name query NB ISATAP<00=
32 4. 460 feB80::ble8:dsc:f777:3 ff02::2 ICMPVE Router solicitation
33 4.465611 192.168.1.1 239.255.255.250 S50DP M-SEARCH * HTTP/1.1
34 4.490592 192.168.1.1 239.255.255.250 SSDP M-SEARCH * HTTP/1.1
35 5.827842 fes80::ble8:d5c:f777:3 ffo2::1:3 UDP source port: 54118 pestination port: 1lmnr
36 5.828175 192.168.1.1 224.0.0.252 uUDP source port: 58642 Destination port: 1lmnr
37 5.927533 feB0::bleB:d5c:f777:3 fF02::1:3 uDP Source port: 54118 Destination port: 1lmnr
38 5.0977A40 192.168.1.1 2724.0.0.257 e source nort: 58642 nestination nort: 1lmar

Frame 26 (1066 bytes on wire, 1066 bytes captured)

Ethernet II, Src: 90:bl:1c:9d:2a:f8 (90:b1:1c:9d:2a:f8), Dst: Xilinx_00:01:02 (00:0a:35:00:01:02)
Internet Protocol, Src: 192.168.1.1 (192.168.1.1), pst: 192.168.1.100 (192.168.1.100)

User Datagram Protocol, Src Port: 52002 (52002), Dst Port: 52002 (52002)

o Data (1024 bytes)

Ld.".7. . Je

Figure — 7: Wire shark view

ACKNOWLEDGEMENT
The authors wish to thank Director, NPOL for permitting to carry out this project. Authors also wish to thank Mr. Suresh M., Scientist

963 www.ijergs.org

International Journal of Engineering Research and General Science Volume 3, Issue 1, January-February, 2015
ISSN 2091-2730

G, NPOL, Mrs. Jayamma T. M., Scientist F, NPOL, Ralph D Kappithan and Scientist D, NPOL for their valuable guidance, help and
insightful comments.

CONCLUSION

Soft processor based FPGA controller card is a promising reliable and robust system for SONAR front end applications. The hardware
was built by instantiating microblaze soft processor with UART, Ethernet, Flash and custom memory as peripherals. On this hardware
an embedded system was developed which receives data in UDP packet and extract the data to write to the custom memory and a
backup of data was taken in flash simultaneously. The system was implemented on Xilinx ML505 board and the required
functionalities were verified. Here a highly efficient system is suggested which reduces the handshake unreliability between the
hardware and the processor that becomes a big bottle neck while designing controller cards.

REFERENCES:
[1] “Data Acquisition Fundamentals”, National Instruments, August, 1999

[2] “Embedded System Example: Web Server Design Using MicroBlaze Soft Processor®, Xilinx, October 13, 2006
[3] “Xilkernel”, Xilinx, December 12, 2006

[4] “StrataFlash Embedded Memory (P30)”, Numonyx, November, 2007

[5] “MicroBlaze Processor Reference Guide”, Xilinx, 2008

[6] “ML505/506/507 Overview and Setup”, Xilinx, June, 2008

[7] “LightWeight IP (IwIP) Application Examples. June 15>, Xilinx, 2009

[8] “PLBV46 Slave Single (v1.01a)”, Xilinx, June 22, 2010

[9] “Using EDK to Run Xilkernel on a MicroBlaze Processor”, Xilinx, August 11, 2010

[10] “IwIP 1.3.0 Library (v3.01.a)”, Xilinx, July 6, 2011

[11] “LibXil Flash (v3.01.a)”, Xilinx, April 24, 2012

[12] “OS and Libraries Document Collection”, Xilinx, April 24, 2012

964 www.ijergs.org

