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Abstract— In this paper, we proposed and analyzed the effects of vaccination strategy on the transmission of the Dengue 

diseases. We propose SIR model with logistic recruitment rate, and analyzed the Steady state and stability of the equilibrium points. If 
*

0 1R   then the non- infected steady state 
*

1P  will be stable. Also if 
*

0 1R   then the endemic equilibrium 
*

2P  is stable. 

Numerical simulations show that the effect of newborn vaccination is significantly less effective than vaccinating susceptible 

population. Also the effect of vaccination is to replace multiple outbreaks with a single outbreak.  
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1. Introduction 

Dengue is the most important human viral disease transmitted by arthropod vectors. Annually there are an estimated 50–100 million 

cases of dengue fever (DF), and 250 000 to 500 000 cases of dengue haemorrhagic fever (DHF) in the world. Dengue infection is 

classified into three categories: Dengue fever (DF), Dengue hemorrhagic fever (DHF) and Dengue shock syndrome (DSS). DF, DHF 

and DSS are caused by the four dengue viruses DEN 1, 2, 3, and 4. Infection in humans with one serotype provides life-long immunity 

to that virus but not to the others. Dengue viruses are maintained in an urban transmission cycle in tropical and subtropical areas by 

the mosquito Aedes aegypti, a species closely associated with human habitation. In some regions other Aedes species, such as Ae 

albopictus and Ae polynesiensis are also involved. 

There are some epidemiological and demographical factors that contribute to the transmission of the disease. From a practical point of 

view, many countries organized vaccination programs to control the spread of the disease. The effects of vaccination on the 

transmission of infectious diseases are studied by some researchers [2, 3, 4]. These researchers studied the direct transmitted disease. 

In our second model we studied the effect of vaccination on an indirect transmitted disease. Recently many researchers [4, 5, 6, 7] 

studied the vaccination strategy for all type of dengue viruses but it is not perfect. The mathematical models for Dengue Fever found 

in literature [2, 7, 8] are based on compartmental dynamics. We have also used the compartmental dynamics. 

2. Formulation of the model 

In this paper we consider the effects of vaccination strategy on the transmission of the Dengue diseases. The model assumes that 

the host population grows logistically, and has a constant disease death rate. We also assume that the vector population has constant 

size with birth and death rate equal to V . The host p o p u l a t i o n  is subdivided into t h e  susceptible HS , infective IH , and 

recovered HR  classes. The Vector population, due to  a  sho r t  life period, is subdivided into the susceptible VS , infective IV . 

The transmission model for the dengue disease is as follows:  

1
 

    
 

VH H
H H H H H H

H V

IdS N
N S S

dt K N
    

( ) I   VH
H H H H H

V

IdI
S

dt N
           (2.1) 
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I H
H H H

dR
R

dt
   

For Vector population: 

  V H
V V V V V

H

dS I
V S S

dt N
    

 V H
V V V V

H

dI I
S I

dt N
          (2.2) 

The initial conditions 

  H H H HN S I R  and  V V VS I N        

1 I
 

    
 

H H
H H H H H H

H

dN N
N N

dt K
         (2.3) 

It is convenient to reformulate the model (6.2.4) in terms of population proportion  H

H

S
x

N
,   H

H

I
y

N
  and  V

V

I
z

N
, which are the 

fractions of the susceptible, invectives and removals, respectively. 

Hence the system can be written as 

1
 

    
 

H
H H H

H

Ndx
xz x

dt K
    

 H

dy
xz My

dt
          (2.4) 

(1 )  V V

dz
z y z

dt
   

where M   H H    

We consider two types of vaccination, one that is being administered to a portion of new born host and another one is being 

administered to a portion of susceptible host. The main question here is whether it is enough to vaccine only new born host in 

order to control the spread of the disease or it is necessary to vaccinate the larger susceptible host [4].  

Let a portion  , 0 1  , of newborn  host  be vaccinated. Assume that t h e  vaccine is not perfect and assume that the 

effectiveness of the vaccine is s , and then (1 ) 1
 

  
 

H
H

H

N
s

K
  newborns remain susceptible,  and 1

 
 

 

H
H

H

N
s

K
  directly  

being removed to HR · The corresponding dynamic equation for x is given by 
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(1 ) 1
 

     
 

H
H H H

H

Ndx
s xz x

dt K
         (2.5) 

and the other  two equations in (2.4) remain the same. On the other hand, let a  portion , 0 1   of susceptible host be 

vaccinated. Then the dynamical equation of x and y is as follows: 

1 (1 )
 

     
 

H
H H H

H

Ndx
xz s x

dt K
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(1 )  H

dy
xz s My

dt
         (2.6) 

These two cases ( 2.5) a n d  (2.6) are  wr i t t en  on one system as follows: 

 (1 ) 1 (1 )
 
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 (1 )  V V

dz
z y z
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   

In succession by putting 0   or 0  , these two equations (2.6) and (2.7) can be generated. Rescale t by 
V  the system of 

equations (2.7) simplified to 
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3.  Steady state and Stability Analysis 

Equilibrium points are obtained by setting time derivatives of x, y and z equal to zero then the system(2.8) has two possible 

equilibria, i.e.,  the non-endemic equilibrium  *

1 (1 ) ,0,0P r   and the endemic equilibrium 
* ** ** **

2 ( , , )P x y z , where  
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It is clear that the non-endemic equilibrium point  *

1 (1 ) ,0,0P r   will be stable if
*

0 1R . 

At the endemic equilibrium point 
* ** ** **

2 ( , , )P x y z the variation matrix becomes 
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its characteristics equation 

3 2 0   A B C           

where 
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b[ (1 ) ]  C r   

It is clear that all the coefficient of the characteristics polynomial are positive. Direct calculation shows that A > 0, C > 0 and AB > C 

by Routh-Hurwitz criteria. Hence the endemic equilibrium will be stable if
*

0 1R  where 
*

0

(1 )(1 ) 1
 

   
 

H
H V

H

V

N
s s

K
R

M

   


 

4. Results and Discussions. 

The system of equation (2.8) was solved numerically using mathematical software. The values of the parameters are taken from [10]. 

After simulation, we observed that the dynamic of infected human and infected vector are not affected by newborn vaccination. In 

Figure 1, (a) and (b) show the proportion of the infective human population without vaccination. We see that first outbreak occurs at 

approximately t=6. Second outbreak begin from approximately t=2400. If the newborn vaccination is applied, Figure 1(c) shows that 

still one outbreak occurs followed by exponential decay. However, if the susceptible vaccination is applied, Figure 1(d) shows that 

there is almost no outbreak and the numbers of subsequent cases exponentially decay.  
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Fig. 2 presents the dynamics of SH, IH and IV in 100 days after one infected entered the population. We found that SH drops 

significantly in a relatively small period of time. Infected human IH and infected vector IV increases significantly during the period of 

12 days and then oscillate around the endemic equilibrium state. 

 

(a)                                                         (b)  

 

 

(c)                                                     (d)   

Fig. 1: Dynamics of IH population without vaccination and the IH population  

with newborn vaccination and susceptible vaccination. 
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Fig. 2:  Dynamics of SH, IH and IV in 100 days with the initial condition   (0.73, 0.035, 0.025) for 

V =0.25, 
H =1/(60x365),  =0.1428, 

H =0.75, 
V =1, 0H , 

54 10 HK ,  

NH=10000, 6400VN . With these parameters, R0=11.51>1. 

Fig. 3 shows simulations with different proportions of the susceptible vaccination in endemic equilibrium state for  =0, 0.25, 0.50, 

0.75, 1. We observed that vaccination decreases the number of infectives. That is, the dose of susceptible vaccination is increases then 

the number of infectives with respect to time is exponential decreases. 

 

Fig. 3: Dynamics of infected Human with different proportions of the susceptible 

    Vaccination in endemic equilibrium state for  =0, 0.25, 0.50, 0.75, 1. 
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outbreak. However, if we apply the susceptible vaccination there is almost no outbreak occurs and the cases exponentially decay 

approaching the disease-free equilibrium (Figure 1(d)). 
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