
International Journal of Engineering Research and General Science Volume 3, Issue 1, January-February, 2015
ISSN 2091-2730

659 www.ijergs.org

Improving Efficiency in Keyword Search Using Exact and Fuzzy Methods

Nikhil Raj, Ashwani Kumar, Vibhans Kumar, Ravi Verma, Sonali Bhandurge

Under Graduate, Computer Engineering, MIT Academy of Engineering, Pune

nikhil.280247@outlook.com, +919175472189

Abstract— In today‘s emerging world, there is a great need to balance and lessen the gap between non-technical and technical ones.

Most applications are being developed in order to make people life easier. Search is one of the most basic and important tool utilized

by humans in everyday life. Search as-you-type feature allows you to get answers on the fly as a user fires a query character by

character. So, we are going to simulate this type of search in our paper with the help of exact and fuzzy search methods. We will study

how search as-you-type works on data lying in the backend database. But there are many challenges in the implementation of these

methods, which include security issues, application compatibility in all platforms and the most important is the response time of

application. We also study how to use indexes in tables that will increase overall performance of searching. We also make declarative

solutions and techniques using exact and fuzzy search. Lastly we have tested our application on large and real time data with millions

of records that shows far better good results.

Keywords— Exact Search, Fuzzy Search, Like and UDF methods, Gram based method, Incremental Computation method,

Neighborhood Generation method, Inverted table method

INTRODUCTION

There are many information systems nowadays which provide autocomplete search by providing instant results as soon as

possible. Many search engines and websites support autocomplete search, which provide multiple answers to the queries provided by

the user. This feature is also known as answers ―on the fly‖. For example, shopping sites helps user search different types of

commodities with a single keyword search of user. If a user types in ―Refrigerators―, then the server may show multiple results with a

title matching this keyword as a prefix. This type of search is popularly known as type ahead search.

Many databases, say, Oracle and SQL server support type ahead search. But there are many challenges which are to be considered

and moreover all databases do not support this feature. Generally autocomplete search methods use three approaches which can be

summarized as follows:

1) Constructing indexes on databases using separate application layer can be used to maintain indexes. However this feature has

a benefit that it can be used to achieve performance, on the contrary it has a major problem of duplication of data and indexes

that may result in additional hardware costs

2) Database extenders, say, Informix DataBlades, MS SQL Server CLR integration allow developers to provide some additional

features, but the point of concern is non-availability of extender feature in databases such as SQL.

3) To use standard SQL techniques which are also portable to other databases. Gravano et al. [1] and Jestes et al.[2] made

similar observations.

SEARCH CATEGORIES

 In particular, there are two types of search which is mostly observed, namely multikeyword search and fuzzy search. In

multikeyword search techniques, a user types in query containing multiple keywords, and find tuples that are similar to these

keywords irrespective of the location of keywords. For example, if a user types in ―Operating Machines‖ to find out a book by

―R.K.Mishran‖ with a title including ―Operating‖ and ―Machines‖ irrespective of the locations. In fuzzy search, minor discrepancies

may be present between entered query and actual results. For example, if a user types in ―Mishrn‖ despite the word ―Mishran‖, then

also this type of search techniques can prove useful. Depending on these search techniques, multiple methods have been discussed

later in the paper.

International Journal of Engineering Research and General Science Volume 3, Issue 1, January-February, 2015
ISSN 2091-2730

660 www.ijergs.org

PREPARATORY MEASURE

 We will first plan the problem of search-as-you-type in database management system and then we will discuss different ways to

support search-as-you-type.

PROBLEM FORMULATION

 Let us take T as a relational table with attributes A1, A2, A3,……, Al. Let R = {r1, r2, r3,….., rn } be the collection of records in T,

and ri[Aj] denote the content of record ri in attribute Aj. Let W be the set of tokenized keywords in R.

SEARCH-AS-YOU-TYPE FOR SINGLE-KEYWORD QUERIES

 Exact search: When a user types in a single partial keyword w, search-as-you-type immediately finds records that contain

keyword with a prefix as w. This type of search is known as prefix search or exact search. Consider the table T with given set of data.

If any user types in a query ―sig‖, it returns records r3, r6, r9. In particular, r3 contain a keyword ―sigmod‖ with a prefix ―sig‖.

Fuzzy search: When a user types in a single partial keyword w which is basically prefix character by character, fuzzy search

immediately finds the record with keyword similar to the query keyword. For example, if a user types in a query ―correl‖, record r7 is

a relevant answer since it contain a keyword ―correlation‖ with a prefix ―correl‖ which is similar to the query keyword ―corel‖. In

fuzzy search we use edit distance to measure similarity between strings. The edit distance between two strings, say, s1 & s2, denoted

by ed(s1,s2), is the minimum number of single-character edit operation needed to transform s1 to s2. For example, ed(corelation,

correlation) =1 and ed(coralation, correlation) =2. A prefix p of a keyword is similar to the partial keyword w if ed(p, w) ≤ edit

distance threshold.

SEARCH-AS-YOU-TYPE FOR MULTI KEYWORD QUERIES

 Exact search: Given a multi keyword query Q with k keywords w1, w2, w3,…., wk, as a user completed the last keyword wk as a

partial keyword and other keyword as a complete keywords. If a user type in a query ―privacysig‖, search-as-you-type returns record

r3, r6 and r9.

 Fuzzy search: Fuzzy search finds the record with keyword similar to the complete keyword and a keyword similar to the partial

keyword wm. Suppose edit distance is equal to one. Assuming that a user types in a query ―privicycorel‖, fuzzy type ahead search

International Journal of Engineering Research and General Science Volume 3, Issue 1, January-February, 2015
ISSN 2091-2730

661 www.ijergs.org

return record r7 since it contains a keyword ―privacy‖ similar to the complete keyword ―privicy‖ and a keyword ―correlation‖ with a

prefix ―correl‖ which is similar to the partial keyword ―corel‖.

EXACT SEARCH FOR SINGLE KEYWORD

 In this section we proposed two types of methods to use SQL to support Search-as-You-Type for single keyword Queries.

No-Index Method

 A simple and straight forward way to support search-as-You-Type is to issue an SQL query that scans record and verifies

whether the record is an answer to the query which can be implemented by two methods:

1) Calling User-Defined Functions (UDFs): We can add functions into database to verify whether a record contains the query

keyword.

2) Using the LIKE predicates: Databases provide LIKE predicates to allow user to perform string matching. But this method

may introduce false positive which can be removed by introducing UDF‘s.

Index-Based Method

 In index-Based method we proposed building auxiliary tables as index structure to facilitate prefix search.

Inverted-index table: In table, we assign unique ids to the keyword in the table T, following their alphabetical order. We create an

inverted-index table IT with record in form <kid, rid>, where kid is the id of record that contain the keyword.

Prefix table: For all prefixes of keywords in the table, we build a prefix table PT with record in the form <p, lkid, ukid>, where p is a

prefix of keyword, lkid is the smallest id of those keyword in table T having p as prefix and ukid is the largest id of those keyword in

table T having p as prefix. So, given a prefix keyword w, we can use the prefix table to find the range of keyword with the prefix. For

example Table 2 illustrate the inverted-index table and the prefix table for the record in Table 1.

Suppose given a partial keyword w, we first get its keyword range [lkid,ukid] using prefix table PT, and then find records that have

keywords in the range through the inverted-index table IT. For example, if a user enters the keyword ‖sig‖, then the SQL query first

finds out keyword range [k7,k8] based on PT. Next, it finds the records containing a keyword with ID in [k7, k8] using IT. We can use

SQL to answer the prefix search query w:

SELECT T* FROM PT, IT, T WHERE PT.prefix = ―w‖ AND PT.ukid ≥ IT.kid AND PT.lkid ≤ IT.kid AND IT.rid = T.rid.

International Journal of Engineering Research and General Science Volume 3, Issue 1, January-February, 2015
ISSN 2091-2730

662 www.ijergs.org

FUZZY SEARCH FOR SINGLE KEYWORD

No-Index Methods

 In fuzzy search LIKE predicate is not supported, so we take UDF to implement no-index methods. We use P D(,s) that takes

keyword w and string s as two parameters and returns minimal edit distance between and the prefixes of the keywords in . For

example, in Table 1,

P D(‗‗pvb‘‘, [title])=P D(‗‗pvb‘‘; ‗‗privacy in database publishing ‘‘)=1.

Here the edit distance is 1 to the query where bears a prefix ―pub‖. PED(w,s) returns true when keyword in string s has prefixes

with edit distance within (edit distance threshold).

INDEX-BASED METHODS

 In this method IT and PT are utilized to support fuzzy search. In the first stage, from prefix table , we calculate its similar

prefixes and range of the keywords is obtained from these similar prefixes. Then with the help of , we calculate the answer

depending upon these ranges.

USING UDF

 UDF can be used to find similar prefixes from the prefix table when a keyword is given. The underlying SQL query helps to

scan each prefix in and a call is made to the UDF to notice whether prefix is similar to w:

 S L T .* FROM , , W R P DTH(, , ,) AND . ≥ . AND . ≤ . AND .

 . .

Performance can be improved by utilization of length filtering which can be done by adding the following clause to the where clause:

 ―L N T (.) ≤ L N T () AND

 L N T (.) ≥L N T () ‒ ‖.

GRAM-BASED METHOD

 Approximate string search is supported by many -gram-based methods. String s is been given as input then its -grams are its

substrings with length . We assume that () represents set of its -grams and the size of () is been represented by │ ()│.

For instance, for ―pvldb‖ and ―vldb‖, have (pvldb) { pv,vl,ld,db} and (vldb)={vl,ld,db}. From the above example we say that

strings and pose edit distance within threshold if

│ () ()│ max(│ 1│,│s2│) 1 ‒ q ‒

International Journal of Engineering Research and General Science Volume 3, Issue 1, January-February, 2015
ISSN 2091-2730

663 www.ijergs.org

This implementation is named as count filtering. But creating IT and PT is not enough, we even need to create a -gram table with

records in the manner (, gram) when there is a necessity to find similar prefixes of the query keyword , where is referred as

prefix in the prefix table and gram referred as -gram of . When a partial keyword is given as input, the initial step is to search

the prefixes in with no smaller than 1 grams in ().

To obtain the candidates of ‘s similar prefixes, the following SQL with ― ROUP Y‖ command is mentioned:

S L T . FROM , W R . . AND . gram IN () ROUP Y .

 AVIN OUNT(. gram) │ │ 1 – q – .

False positives may be introduced in this method hence we make use of UDFs to check the candidates to obtain similar prefixes. It

could be inefficient to use q-gram based method, and utilization of ― ROUP Y‖ could be expensive in database for mostly large -

gram tables. This method is even inefficient for short query keyword [3] it has low pruning power as short keywords have less number

of q-grams. Length filtering may be added to improve performance [1].

NEIGHBORHOOD-GENERATION-BASED METHOD

International Journal of Engineering Research and General Science Volume 3, Issue 1, January-February, 2015
ISSN 2091-2730

664 www.ijergs.org

This method was proposed by Ukkonen to support approximate string searching [4]. If a keyword w is given, the substring of by

eliminating or deleting characters called as ― -deletion neighborhoods‖ of . Set of -deletion neighborhoods of is given by

 () and ̂() ⋃

 (). For instance, for a string ―pvldb‖, (pvldb) = {pvldb}, and (pvldb) = {vldb, pldb, pvdb, pvlb,

pvld}. Assume =1, ̂ (pvldb) = {pvldb, vldb, pldb, pvdb, pvlb, pvld}. If a user enters an input keyword ―pvldb‖, its prefixes are

calculated in that have -deletion neighborhoods in {pvldb, vldb, pldb, pvdb, pvlb, pvld}. From this, we come to know that ―vldb‖

is similar to ―plvdb‖ and their edit distance is 1. So we can say that this method is efficient for short strings but for long strings this

method is inefficient and especially when the edit distance threshold is even large. To store neighborhoods large space is been

required. All these three methods of fuzzy search have some or the other disadvantages. So to overcome these disadvantages an

incremental algorithm is proposed which makes use of previously calculated result to answer subsequent queries.

INCREMENTALLY COMPUTING SIMILAR PREFIXES

 Chaudhari and Kaushik [5] and Ji et al. [6] proposed to compute similar prefix incrementally. If a user types in a keyword w =c1

c2 … cx character by character, then for each prefix p = c1 c2 … ci (i<=x), we maintain a similar-prefix table S
p
T with records in the

form (prefix, ed(p,prefix)), which has all the prefixes similar to p and corresponding edit distances. Due to small similar prefix tables,

in-memory tables can be used to store them. This similar prefix table may be shared by different queries. To avoid table from getting

too big, periodically some of its entries may be removed. So, the incremental-computation algorithm does not maintain session

information for different queries. Suppose the user types one more character cx+1 and enters a new query w’ =c1 c2 … cxcx+1, then we

use table S
w

T to calculate S
w’

T and find the range of keywords of similar prefixes in S
w’

T, by joining the similar-prefix table S
w’

T and the

prefix table PT , and compute the answer of w’ using IT. The following SQL query can be used to answer single keyword query w’:

S L T .* FROM S
w’

T, , , W R S
w’

T .prefix= .prefix AND . ≤ . AND . ≤ . AND . . .

SIMPLE TECHNIQUES FOR FINDING MULTIQUERIES

 In this section, we have used techniques to support multi-keyword queries.

COMPUTING ANSWER FROM SCRATCH

 Let us assume a multi keyword query Q with m keywords. It can be done in two ways:

1) By Using Intersect Operator: In this we first find the records & then by using INTERSECT Operator join these records for

multi keywords to compute the answer

2) By Using Command text: In this we first find the record by using CONTAINS command to find records which match the first

m-1 complete keywords & then use our methods to match the last prefix keyword .

Due to lack of precomputed results, these two methods may lead to low performance and thus, to overcome these problems we

propose an incremental computation method.

INCREMENTAL COMPUTATION BY USING WORD BY WORD

 In this method, suppose a user types a query Q with key word as x1, x2, …, xn, a temporary table CQ is created to reserve the

record ids of query Q. At that instance, if a user types in a new keyword wm+1 and submits a new query Q’ with x1, x2……xn, xn+1 then

a temporary table CQ is utilized to increment the answer.

 Exact Search: We check whether the tuples in CQ contain keywords with prefix wm+1 of new query Q’. The SQL query for the

same is:

S L T .* FROM CQ, , , W R .prefix=‖ wm+1 “ AND . . AND . ≤ . AND . CQ.

AND T. CQ. .

 For example, if a user types in query Q = ―privacysigmod‖ and there is a temporary table CQ = {r3, r6}. At the same instance if the

user types in a new keyword ―pub‖ and issues a new query Q’ = ―privacysigmodpub‖, in that case it is checked whether records r3, r6

contain a keyword with prefix ―pub‖. With the help of CQ, we observe that only r6 contains a keyword ―publishing‖ with prefix ―pub‖.

International Journal of Engineering Research and General Science Volume 3, Issue 1, January-February, 2015
ISSN 2091-2730

665 www.ijergs.org

 Fuzzy Search: Firstly S
wm+1

T is calculated using character level incremental method and then use S
wm+1

T to answer the query. With

the help of temporary table CQ, the SQL query is:

S L T .* FROM S
wm+1

T, , , W R .prefix= S
wm+1

T .prefix AND . . AND . ≤ . AND .

 CQ. AND T. CQ. .

PROVIDE UPDATES EFFECTIVE

 To make updates effective, we have also to consider insertion and deletion of records.

1) Insertion: When a record is entered, we first assign the record with a record ID. For each keyword, we add the keyword in PT.

For each new prefix, we insert it into the prefix table. In this way we reserve the space for the prefix keywords.

2) Deletion: If a record is deleted, there should be an indication that the prefix is deleted from the prefix table for which we use

a bit. If the bit is marked, then the record is deleted. But updating of table is only done when index has to be rebuilt. So, we

have to better update the table until we need to restore the indexes.

EXPERIMENTAL SURVEY

 After implementing the proposed method in two real data sets (DBLP & MEDLINE), we summarize the data sets and index size

into Table 4. From Table 4, we can say that size of IT and PT is acceptable as compared to the data size. In a keyword, substring has

many overlapped q-grams, so the size of q-grams table is larger. As similar prefix table stores similar prefix of a keyword, so its size is

very small. From the log of our deployed system we used 1000 real queries for each data set and assume characters are typed one by

one. We work on a Windows 7 OS with a Intel Core 2 Quad processor (X5450 3.00 GHz and 4 GB memory) and three data bases,

MYSQL, SQL Server 2005 and Oracle 11g.

EXACT SEARCH

International Journal of Engineering Research and General Science Volume 3, Issue 1, January-February, 2015
ISSN 2091-2730

666 www.ijergs.org

 Single Keyword Queries: In our system for single-keyword queries, we implemented three methods: 1)

using UDF, 2) using LIKE predicate and 3) using the IP tables (inverted index and prefix table). Fig. 2 shows

the results.
 UDF based method and LIKE based method had a low search performance as compared to the IP table as in UDF & LIKE based

method, they need to scan records where as in IP table they uses indexes. As the length of keyword increases, the performance of UDF

and LIKE based method decreases as they need to scan more records in order to find the same number (N) of answers whereas IP

tables had a higher performance as there are fewer complete keywords & fewer join operations for the query.

Multi-Keyword queries: We used 6 methods to implement multi keyword queries:

1. Using UDF.

2. Using the LIKE predicate.

3. Using full-text indexes and UDF (called ―FI+UDF‖).

4. Using full-text indexes and the LIK predicate (called ―FI+LIK ‖).

5. Using the IPT tables (inverted- index table prefix table).

6. Using the IPT tables+ (called word- level incremental method).

From figure 3, we see that LIKE based method has low performance. Full-text indexes gives better performance. For example, on the

MEDLINE data set, LIKE based method took higher time and later on method took less time and IPT table+ achieved the highest

performance.

International Journal of Engineering Research and General Science Volume 3, Issue 1, January-February, 2015
ISSN 2091-2730

667 www.ijergs.org

Varying the number of answers N: We compared the performance of methods to compute first N answers by varying the results which

is shown in Fig 4. From the figure, we observe that IP table had highest performance for the single keyword whereas IP table+

outperformed other methods for the multi-keyword for different values of N.

FUZZY SEARCH

 Single-keyword queries: These queries have been implemented by these four methods:

1. Using UDF.

2. Using Gram based method.

3. Using NGB method (called neighborhood-generation-based method).

4. Using INCRE method (called character-level incremental method).

From Fig 5, we conclude that the running time of Gram, NGB & UDF increases while running time of INCRE method decreases.

This is due to the fact that UDF took more time for computing long strings, NGB took more time for i-deletion of longer strings and

more time was required for large number of grams.

Multi-keyword queries: For multi-keyword queries, we did not use UDF & Gram as they were too slow. We implemented two

methods INCRE & NGB to find similar keywords. For multi-keyword queries, we also implemented their word level incremental

called NGB+ & INCRE+. From Fig 6. it is clear that INCRE+ had highest performance . We also evaluated the running time in 2

steps:

1. Finding similar keywords (called NGB-SP & INCRE-SP).

2. Computing first N answers (called NGB-R & INCRE-R).

From Fig 7, we can say that NGB & INCRE nearly took the same amount of time.

Varying the number of returned results (N): Fig 8 shows the result for the first –N answering by varying N from which we can

conclude that INCRE+ & NGB+ can efficiently compute.

International Journal of Engineering Research and General Science Volume 3, Issue 1, January-February, 2015
ISSN 2091-2730

668 www.ijergs.org

RELATED WORK

 The function of auto completion feature is to predict answers to query on the basis of previous parial word typed by the user [7].

This feature was studied in detail by Nandi and Jagadish, also known as phrase prediction. Many other researchers like Bast et al.

proposed HYB indexing techniques [8] [9] to support autocomplete searching. Nowadays keyword search has become very important

in databases. Recently many techniques have been studied on keyword search [10] [11] [12]. There have been recent developments to

support approximate string searching like gram based methods but these are not as better as tri structure in fuzzy search techniques.

Our study on search as you type feature includes these earlier studies by thorough investigation of different related methods.

ACKNOWLEDGEMENT

 We have taken efforts in this project. However, it would not have been possible without the kind support and help of many

individuals and organizations. I would like to extend my sincere thanks to all of them.

 The completion of any inter-disciplinary project depends upon cooperation, coordination and combined efforts of several sources

of knowledge. We are grateful to Prof. Pranali Lokhande, Department of Computer Engineering for her even willingness to give

us valuable advice and direction; whenever we approached her with a problem. We are thankful to her for providing immense

guidance for this project. Our thanks and appreciations also go to our colleagues in developing the project and people who have

willingly helped me out with their abilities.

CONCLUSION

 In this paper, we work on the problem of using SQL to support search as you type in databases. We discuss on the challenge of

how to meet high performance in existing databases. We use prefix matching via auxiliary tables as index structures & SQL queries to

support search as you type. We use fuzzy search to improve performances. We use incremental –computation method to answer

multikeyword queries and study about incremental updates. Our result on large, real data sets showed that our method can enable

DBMS system to support search as you type on large tables.

International Journal of Engineering Research and General Science Volume 3, Issue 1, January-February, 2015
ISSN 2091-2730

669 www.ijergs.org

 However, there are several problems to support search as you type using SQL. For example, one is how to support queries

efficiently and other is how to support multiple tables.

REFERENCES:

[1] L. ravano, P. . Ipeirotis, .V. Jagadish, N. Koudas, S. Muthukrishnan, and D. Srivastava, ―Approximate String Joins in a Data

 ase (Almost) for Free,‖ Proc. 27th Int‘l onf. Very Large Data ases (VLD ‘01), pp. 491-500, 2001.

[2] J. Jestes, F. Li, Z. Yan, and K. Yi, ―Probabilistic String Similarity Joins,‖ Proc. Int‘l onf. Management of Data (SI MOD ‘10),

pp. 327- 338, 2010.

[3] J. Wang, . Li, and J. Feng, ―Trie-Join: Efficient Trie-Based String Similarity Joins with Edit-Distance onstraints,‖ Proc. VLDB

Endowment, vol. 3, no. 1, pp. 1219-1230, 2010.

[4] . Ukkonen, ―Finding Approximate Patterns in Strings,‖ J. Algorithms, vol. 6, no. 1, pp. 132-137, 1985.

[5] S. haudhuri and R. Kaushik, ― xtending Autocompletion to Tolerate rrors,‖ Proc. 35th A M SI MOD Int‘l onf.

Management of Data (SI MOD ‘09), pp. 433-439, 2009.

[6] S. Ji, . Li, . Li, and J. Feng, ― fficient Interactive Fuzzy Keyword Search,‖ Proc. 18th A M SI MOD Int‘l onf. World Wide

Web (WWW), pp. 371-380, 2009.

[7] A. Nandi and H.V. Jagadish, ― ffective Phrase Prediction,‖ Proc. 33rd Int‘l onf. Very Large Data ases (VLD ‘07), pp. 219-

230, 2007.

[8] . ast, A. hitea, F.M. Suchanek, and I. Weber, ― ST R: fficient Search on Text, ntities, and Relations,‖ Proc. 30th Ann.

Int‘l A M SI IR onf. Research and Development in Information Retrieval (SI IR ‘07), pp. 671-678, 2007.

[9] . ast and I. Weber, ―The omplete Search ngine: Interactive, fficient, and Towards IR & D Integration,‖ Proc. onf.

Innovative Data Systems Research (CIDR), pp. 88-95, 2007.

[10] S. Agrawal, S. haudhuri, and . Das, ―D Xplorer: A System for Keyword- ased Search over Relational Data ases,‖ Proc.

18
th

 Int‘l onf. Data ng. (I D ‘02), pp. 5-16, 2002.

[11] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan, ―Keyword Searching and rowsing in Data ases

Using anks,‖ Proc. 18th Int‘l onf. Data ng. (I D ‘02), pp. 431- 440, 2002.

 [12] F. Liu, .T. Yu, W. Meng, and A. howdhury, ― ffective Keyword Search in Relational Data ases,‖ Proc. A M SI MOD

Int‘l onf. Management of Data (SI MOD ‘06), pp. 563-574, 2006.

[13] Wikipedia, ―en.wikipedia.org/wiki/Approximate_string_matching‖

