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Abstract— The Hadoop Distributed File System (HDFS) is designed to store large data sets reliably and to stream those data sets at 

high bandwidth to user applications. In a large cluster, thousands of servers and host are directly attached and execute user application 

tasks. By distributing storage and computation across many servers, the resource can grow with demand while remaining economical 

at every size. Hadoop is a popular opensource implementation of MapReduce for the analysis of large datasets. To manage storage 

resources across the cluster, Hadoop uses a distributed user-level file system. This paper analyzes the performance of two major 

clustering algorithms K-means and DBSCAN on Hadoop platform and uncovers several performance issues. The experimental result 

demonstrates that K-means clustering algorithm is more efficient than DBSCAN algorithm based on MapReduce. Experimental 

results also show that DBSCAN algorithm based on MapReduce alleviates the problem of time delay caused by large data sets. 

 

Keywords— MapReduce, Hadoop, Clustering, K-means, DBSCAN, HDFS 

INTRODUCTION 

  Apache Hadoop is an open-source software framework that supports data-intensive distributed applications, licensed under 

the Apache v2 license. It supports the running of applications on large clusters of commodity hardware. Hadoop was derived from 

Google’s MapReduce and Google File System (GFS) papers. The Hadoop framework transparently provides both reliability and data 

motion to applications. Hadoop implements a computational paradigm named MapReduce, where the application is divided into many 

small fragments of work, each of which may be executed or re-executed on any node in the cluster. In addition, it provides a 

distributed file system that stores data on the compute nodes, providing very high aggregate bandwidth across the cluster. Both 

map/reduce and the distributed file system are designed so that node failures are automatically handled by the framework.  

        In a larger cluster[1] the HDFS is managed through a dedicated NameNode server that hosts the filesystem index, and a 

secondary NameNode that can generate snapshots of the namenode’s memory structures, so preventing filesystem corruption and 

reducing loss of data. Similarly, job scheduling can be managed by a standalone JobTracker server. In clusters where the Hadoop 

MapReduce engine is deployed against an alternate filesystem, the NameNode, secondary NameNode and DataNode architecture of 

HDFS is replaced by the filesystem-specific equivalent In a Hadoop cluster, data is distributed to all the nodes of the cluster as it is 

being loaded in. The Hadoop Distributed File System (HDFS) will split large data files into chunks which are managed by different 

nodes in the cluster. In addition to this each chunk is replicated across several machines, so that a single machine failure does not 

result in any data being unavailable. An active monitoring system then re-replicates the data in response to system failures which can 

result in partial storage. Even though the file chunks are replicated and distributed across several machines, they form a single 

namespace, so their contents are universally accessible. Data is conceptually record-oriented in the Hadoop programming framework. 

Individual input files are broken into lines or into other formats specific to the application logic. Each process running on a node in the 

cluster then processes a subset of these records. The Hadoop framework then schedules these processes in proximity to the location of 

data/records using knowledge from the distributed file system. Since files are spread across the distributed file system as chunks, each 

compute process running on a node operates on a subset of the data. Which data operated on by a node is chosen based on its locality 

to the node: most data is read from the local disk straight into the CPU, alleviating strain on network bandwidth and preventing 

unnecessary network transfers. This strategy of moving computation to the data, instead of moving the data to the computation allows 

Hadoop to achieve high data locality which in turn results in high performance. 
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Fig. 1 HDFS setup 

MAPREDUCE PROGRAMMING MODEL 

MapReduce Programming Model MapReduce is a software framework proposed by Google, which is a basis computational 

model of current cloud computing platform. Its main function is to handle massive amounts of data. Because of its simplicity, 

MapReduce can effectively deal with machine failures and easily expand the number of system nodes. MapReduce provides a 

distributed approach to process massive data distributed on a large -scale computer clusters. The input data is stored in the distributed 

file system (HDFS), MapReduce adopts a divide and conquer method to evenly divide the inputted large data sets into small data sets, 

and then process on different node, which has achieved parallelism.  In the MapReduce programming model[2] data is seen as a series 

of key value pairs like,the workflow of MapReduce consists of three phases: Map, Shuffle, and Reduce. Users simply write map and 

reduce functions. In the Map phase, a map task corresponds to a node in the cluster, as the other word, multiple map tasks are be 

running in parallel at the same time in a cluster. Each map call is given a key-value pair (k1, v1) and produces a list of (k2, v2) pairs. 

The output of the map calls is transferred to the reduce nodes (shuffle phase). All the intermediate records with the same intermediate 

key (k2) are sent to the same reducer node. At each reduce node, the received intermediate records are sorted and grouped (all the 

intermediate records with the same key form a single group). Each group is processed in a single reduce call. The data processing can 

be summarized as follows:  

Map (k1, v1) −→ list (k2, v2)     

Reduce (k2,list(v2))−→list(k3,v3) 

K-MEANS CLUSTERING ALGORITHM 

 K-Means is a simple learning algorithm for clustering analysis. The goal of K-Means algorithm is to find the best division of 

n entities in k groups, so that the total distance between the group’s members and its corresponding centroid, representative of the 

group, is minimized the k-means algorithm is used for partitioning where each cluster’s Centre is represented by the mean value of the 

objects in the cluster [3] K-means Pseudo code: 

 1. Begin with n clusters, each containing one object and we will number the clusters 1 through n. 

 2. Compute the between-cluster distance D(r, s)   between-object distance of the two objects in r and s respectively, r, s =1, 2… n. Let 

the square matrix D = (D(r, s)). If the objects are represented by vectors, we can use the Euclidean distance.  

3. Next, find the most similar pair of clusters r and s, such that the distance, D(r, s), is minimum among all the pairwise distances.            

4. Merge r and s to a new cluster t and compute the between-cluster distance D(t, k) for any existing cluster k ≠ r, s . Once the 

distances are obtained, delete the rows and columns corresponding to the old cluster r and s in the D matrix, since r and s do not exist 

anymore. Then add a new row and column in D corresponding to cluster t. 5. Repeat Step 3 a total of n − 1 times until there is only 

one cluster left.   
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K-MEANS ALGORITHM BASED ON MAPREDUCE  

As the analysis above, PKMeans algorithm needs one kind of MapReduce job. The map function performs the procedure of 

assigning each sample to the closest center while the reduce function performs the procedure of updating the new centers. In order to 

decrease the cost of network communication, a combiner function is developed to deal with partial combination of the intermediate 

values with the same key within the same map task. In Map-function the input dataset is stored on HDFS [16] as a sequence file 

of<key, value>pairs, each of which represents are cord in the dataset. The key is the offset in bytes of this record to the start point of 

the data file, and the value is a string of the content of this record. The dataset is split and globally broadcast to all mappers. 

Consequently, the distance computations are parallel executed. For each map task, PKMeans construct a global variant centers which 

is an array containing the information about centers of the clusters. Given the information, a mapper can compute the closest center 

point for each sample. The intermediate values are then composed of two parts: the index of the closest center point and the sample 

information. The pseudo code of map function is shown in Algorithm 

  DBSCAN CLUSTERING ALGORITHM 

DBSCAN Clustering Algorithm The purpose of clustering algorithm is to convert large amounts of raw data into separate 

clusters in order to better and faster access. DBSCAN and Kmeans are two major algorithm for processing clustering problem. 

DBSCAN is a density-based clustering algorithm , which can generate any number of clusters, and also for the distribution of spatial 

data. KMeans algorithm is based on the prototype, which can find the approximate class for the given value. Compared to K-means 

algorithm, DBSCAN does not need to know the number of classes to be formed in advance. It can not only find freeform class, but 

also to identify the noise points. Class is defined as a collection contains the maximum number of data objects which density 

connectivity in DBSCAN algorithm. The idea of the algorithm is for all of the unmarked objects in data set D, select object P and 

marked P as visited. Region query for P to determine whether it is a core object. If P is not a core object, then mark it as noise and 

reselect another object that is not marked. If P is a core object, then establish class C for the core object P and generals the objects 

within P as seed objects to region query to expanding the class C until no new object join class C, clustering process over. That is 

when the number of objects in the given radius (ε) region not less than the density threshold (MinPts), then clustering. Because of 

taking the density distribution of data object into account, so it can mining for freeform datasets. The following are related terms, 

definitions [4] of DBSCAN algorithm:  

 

 The area in ε of the specified object P is called ε region of P.   

  If the number of objects in the ε region of object P is not less than the given density Threshold MinPts, say P is a core           

object. 

 The given dataset D, if object P is included in the ε region of object Q, and Q is a core Object, say P starting from Q is 

directly density-reachable.  

 Object list {P1, P2... Pn}, P1 = Q, Pn = P, for Pi ∈ D (1 ≤ i ≤ n), if Pi +1 starting from Pi is directly density-reachable on ε 

and MinPts, then P starting from Q is density-reachable on ε and MinPts. 

 For the object O in the dataset D, if object P starting from O is density-reachable on ε and MinPts and object Q starting from 

O is also density-reachable on ε and MinPts, then call P to Q is density-linked on ε and MinPts.  

 If object P does not belong to any class, P is said to noise. DBSCAN discover classes by querying the ε region of unmarked 

objects in the dataset. If the ε region of an object P has the number of objects is more than MinPts, then create a new class 

based on the core object P, all of the objects in the ε region of P and P are belong to the same class. Objects in the ε region of 

P are treated as seeds and region query for these seeds to expanding the class until there is no new object join class.  

 

Algorithm pseudo-code is as follows:   

 

Input: dataset D, radius Eps, density threshold MinPts  

 

Output: class C   

 

1. DBSCAN（D, Eps, MinPts）  

2. Begin  

3. Init C=0; // the number of classes is initialized to 0   
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4. for each unvisited point p in D   

5. Mark p as visited; //marked P as accessed   

6. N = getNeighbours (p, Eps);  

7. If sizeOf (N) < MinPts then   

8. Mark p as Noise; //if sizeOf (N) < MinPts then mark P as noise  

9. Else   

10. C= next cluster; //create a new class C   

11. Expand Cluster (p, N, C, Eps, MinPts); //expand class C   

12. End if   

13. End for   

14. End          

DBSCAN algorithm has two parameters: the radius ε and density threshold MinPts, Determination of parameters determine 

the final clustering result. On the computational complexity, if using spatial index, it can be analyzed the time complexity of 

DBSCAN is O (nlogn), n is the number of objects in the database. Otherwise, the time complexity rises to O (n2) [5]. As we know, 

DBSCAN algorithm firstly determine whether an object is the core object, if it is, then continue to expand the class with the object as 

the center. In this process, with the increasing of core objects, the objects which are not marked are stored in memory, if there is a very 

large clustering in database, it will require a lot of memory space to store the core object information, and will lead to high I/O 

overhead, as a result, the clustering speed will be seriously affected. So this paper proposes a parallel DBSCAN clustering algorithm 

based on MapReduce to reduce I/O overhead and improve the clustering speed. 

 

DBSCAN ALGORITHM BASED ON MAPREDUCE 

 

In DBSCAN algorithm extending class is by verifies whether the given object in the dataset D is a core at the specified radius ε. 

The Algorithm takes a large part of the time spending on the region query of object. When the dataset is very large, the inputted data 

objects are many, serial DBSCAN algorithm to determine whether each of object is core object will consume a high I/O overhead. 

Researchers found that the determination of core object can be parallelized, and we can get a conclusion by analyzing the algorithm 

that if an object exists in two different classes, and it is a core object, then these two classes can be merged into a new class. Otherwise 

the object belongs to one of classes, there is no relationship between the two classes. This paper introduces a new concept - sharing 

object sharing object Core objects P and Q belong to different classes, if the object O starting from P, Q are directly densityreachable, 

then called object O is a sharing object. And if O is a core object, called O is a sharing core object. If there exist a sharing core object 

in different classes, these classes can be combined into a new class. As shown in Figure 3, object O is a sharing core object: Figure 3. 

Clustering of Overlapping Objects in Region Obviously we can take advantage of the MapReduce programming model to parallelize 

the whole process to save clustering time and resources. The basic idea of  

DBSCAN algorithm based on MapReduce is divided into four steps [6]:  

 

1)Step one: The data in the dataset cut into small blocks which are equal size.   

 

2) Step two: the blocks are distributed to the nodes in the cluster, so that all of nodes in the cluster can run the Map function of 

themselves in parallel to calculate and process those blocks.  

 

3) Initial Cluster. For any unlabeled object p in the dataset, using Map-Reduce parallel programming model to calculate the number of 

objects in its region to determine if it is a core object. If is, P and all the objects in the region of P constitute an initial class (C), and 

marked those objects with the same cluster identifier (Cid). Conversely, if p is not a core object, and there is no other object in its 

region, marked P as noise. Otherwise, detect whether there has a core object q in the region of non-core object p. If has, given the 

object p and the objects in the region of q with the same cluster identifier. Repeat until all of the objects in the dataset are identified. 

After the process is completed, get an initial class clusters and a noise set.   

 

4) Merge Result. Class merging is to consider these objects which exist in more than two classes. If there is a sharing core object, 

merging the two classes. Else classify the object as the proximity side. It will be given a new class name if there have different classes 

are combined. When there is no object exist in different classes, mergering initialize class completed. 3. Step three: merge the result of 

each processor. 4. Step four: Output clustering results. Figure 3 shows the ideas of DBSCAN algorithm based on MapReduce, the data 
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exchange format of each stage is, and the object identifier Oid as the key, value is filled with (core_tag, used_tag, Cid, x, y, and z). 

Core_tag indicates whether it is a core object, used_tag identify whether there had been clustering, Cid means class logo .Headings, or 

heads, are organizational devices that guide the reader through your paper. There are two types: component heads and text heads.   

 

 
Fig.3 DBSCAN with MapReduce 

 

 EXPERIMENTAL RESULTS 

For the test, we have taken a data set and selected a key value pair. After implementing DBSCAN algorithm based on 

MapReduce we get the following result. The output in fig 4. Displays the execution time taken by DBSCAN algorithm on Hadoop 

MapReduce Framework. Similarly, after implementing k-means clustering algorithm on Hadoop for same data set and same key value 

pair we get the execution time as shown in fig.5. Table I summarizes the execution time taken by both the algorithms on Hadoop 

 

Experiment 1: Execution time taken by K-Means algorithm and DBSCAN clustering algorithm based on Hadoop for the same 

documents.   

                                                   

 

 
 

Fig. 4 Execution time taken by DBSCAN 
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Fig.5 Execution time taken by K-means 

 

 

                                                 Table 1 Execution time table  

Clustering 

Algorithm 

DBSCAN 

algorithm 

K-means algorithm 

Execution time in 

seconds(s) 

39.240 60.052 

 

Experiment 2:  As the number of nodes increases the time taken by each algorithm is as follows 

 

Fig. 6 Scalability Factor based on number of nodes 
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Table 2 Time taken by both algorithm as number of nodes are increased 

                       

 

 

 

 

 

 

 

 

 

                                                 
                                                

Fig. 7 Execution time taken by both algorithms as number of nodes are increased 

 
 

CONCLUSION 

DBSCAN and K-means are two major algorithm for processing clustering problem. These algorithms can automatically 

cluster the data making full sense of the Hadoop cluster performance. 

The main deficiency with K-means clustering algorithm is we have to set the number of clusters to be generated in advance and it is 

also sensitive to noise and outlier data. Compared to K-means algorithm, DBSCAN does not need to know the number of classes to be 

formed in advance, it can not only find freeform classes but also identify noise points. 

As per the results obtained K-means clustering algorithm performed on Hadoop alleviates the problem of time delay caused by 

increasing the number of nodes.      
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