
International Journal of Engineering Research and General Science Volume 3, Issue 2,  March-April, 2015                                                                                   
ISSN 2091-2730 

28                                                                                                   www.ijergs.org  

Qualitative Approach For Estimating the Influence Of Refactoring 

And Scrum In Software Development 

Rida Ghafoor Hussain, Ali Javed 

Department of Software Engineering 

University Of Engineering And Technology, Taxila, Pakistan. 

 rida_ghafoor@yahoo.com , ali.javed@uettaxila.edu.pk  

 

Abstract— Software development is intellectually  a complex chore. The swift progress of software currently requires the high rate 

software product release by development teams. Different software development techniques and quality assurance methods are used in 

order to achieve high worth, unfailing, and error free software. In order to deliver the product earlier, the development teams make an 

alteration to their conservative software development lifecycle to agile development method which can allow them towards prompt 

release of software management with the requirements-change experience. Refactoring has been rising in magnitude with modern 

software engineering advances, predominantly agile methodologies, which endorse uninterrupted progress of an application's code and 

blueprint. Refactoring is the practice of analyzing and facilitating the plan of offered code, without altering its performance. Another 

trendy techniques in Agile development is the Scrum methodology. It involves regular release and the client receives an absolutely 

prepared application that includes more and more features every time In this paper Qualitative Approach For Estimating the Influence 

Of Refactoring And Scrum In Software Development is utilized. In this model scrum methodology is utilized in enhanced form to 

overcome scrum issues along with refactoring  project  at both  design and implementation level. 

Keywords— AOSD, CBO,KPI, SDMs, MDA,XP,agile,refactor 

INTRODUCTION 

The development of the Internet and the electronic frugality has tainted the policy of software engineering.  Conventional software 

development methodologies (SDMs) are being recouped by agile SDMs.  Agile SDMs are outlined by incremental development, 

incessant code assimilation, and the capability to switch altering production requirements.  Agile technology is used to generate 

advanced quality software in a briefer epoch .Agile procedures were refined to rationalize the growth practices and remove boundaries 

to accommodating production requirement changes through the growth process.  Agile methodologies do not need that business 

requirements and plan particulars be protected in for the period of expansion [1]. Agile SDMs contribute to numerous features 

including prototyping, incremental development, and negligible citations [1]. Extreme Programming (XP) is an agile (lightweight) 

soft-ware development methodology and it becomes more and more well-liked. Extreme programming (XP) is one of the mainly and 

extensively used agile practices for software development. It tries to look up software quality and receptiveness to varying client 

requirements. Software refactoring is an XP procedure to augment the maintainability of software, improve reusability and 

understandability of the software. Refactoring is basically the object-oriented variant of restructuring:"the process of changing an 

object-oriented software system in such a mode that it does not change the peripheral performance of the code, however enhances its 

inner organization" [3]. In the refactoring process, modifications were done to the scheme parting its performance unaffected, but 

upgrade some non-functional quality like integrity, flexibility, understandability, etc., [4].Un-refactored code contribute to decompose. 

Rot takes several forms: insanitary interdependence between classes or packages, poor distribution of class errands, too many 

responsibilities per method or class, replica code, and many other variations of uncertainty and litter. This is because each time code is 

modified without refactoring, rot aggravates. Code rot disappoints users, overheads time, and excessively reduces the lifetime of 

practical systems. In an agile perspective, it can signify the difference between fulfilling or not fulfilling an iteration target. 

Refactoring code callously prevents rot, keeping the code trouble-free to sustain and expand. This extensibility is the reason to refactor 

and the degree of its success. The Scrum procedure was also considered to switch speedily altering business requirements. The 

practice‘s name is a consequent of an approach used in the game of Rugby.  In a Rugby scrum, the ball is passed reverse  and forward 

between players to move the ball onward.  The Scrum method promotes a project by enhancing connection between group members 

and splitting the task into a series of ―sprints‖ that last thirty days or less [Schatz].  Scrum focuses additional on organization of the 

http://www.ijergs.org/
mailto:rida_ghafoor@yahoo.com
mailto:ali.javed@uettaxila.edu.pk


International Journal of Engineering Research and General Science Volume 3, Issue 2,  March-April, 2015                                                                                   
ISSN 2091-2730 

29                                                                                                   www.ijergs.org  

growth process than coding phenomenon [5]. Scrum is a practica that can be utilized on little and huge projects.  Individual teams can 

use the Scrum methodology on their projects while huge  projects can be splitted into modules and a Scrum team ascribed to each 

subproject.  The connection and main concern administration between the subproject teams can be regulated with Scrum techniques. 

The key purpose of the investigation is to enhance  software development model using Refactoring and Scrum practices. The software 

development model is planned in such a way that refactoring activity accompanies all design and implementation phases of software 

development. Similarly scrum methodology is proposed considering certain issues like usability, understanding, security etc. This 

effort also shows the estimation of influence of projected strategy. 

LITERATURE REVIEW 

Quality cannot be attained rapidly in any software development. Perfection comes over the epoch. Adjustment  in  the  software  

development  form is required in  managing quality product deployment.[11] Agile software development procedures are used to yield 

high aspect software in briefer duration of time.[14] ―Refreshing requirements yet  belatedly  in  development‖ is fundamental of agile 

development methodology.[6] A few prominent agile development techniques are Extreme Programming (XP), Scrum, Crystal 

Methods, Feature Driven Development (FDD) and Test Driven Development. These procedures behave in a different way from 

conventional Software Development Methods and facilitate systems meet up the demands of the digital cost-cutting measure .[15] 

Refactoring  is  a  foremost technique  used  to  handle  changes.  Freezing  the  external performance it facilitates  to restructure  code 

.[6] Similarly Scrum is a nimble way to run a development, typically software development. Scrum software development team deals 

with project development  in the agile development based on scrum methodology. It doesn‘t need detailed imagery of implementation, 

because the team knows best optimization of project to solve the problem.[16] Karim M. Zaki, Ramadan Moawad in [9] ―A Hybrid 

Disciplined Agile Software Process Model‖  provides integration between customary techniques, configuration, constancy and  swift 

understanding of populace, capability, ease. The proposed model will provide a platform that regulates aims and objectives of both 

management and implementation team. The past vacancies and issues could be easily resolved and a follow up will be provided to 

track system status. Manjunath K N, Jagadeesh J, Yogeesh M in [11] ―Achieving quality product in a long term software product  

development in healthcare application using Lean and Agile principles‖ have proposed  V-model.By comparison of  the outcome 

obtained through implementation of Agile principles with previous results, it is observed that this model is an excellent approach for 

lengthy projects in healthcare departments. Completion of V-model will be possible through agile and lean approaches in every 

iteration of requirements change. A. Ahmed, et al in [10]  ―Agile Software Development: Impact on Productivity and Quality‖ 

recommended a model that accentuate on code refactoring .There should be a chapter of high rank blueprint of the project after the 

early requirements gathering and reasoning of the project. The suggested model recommends that the design must be stretchy as much 

as necessary to put up changes afterward in the execution part. Code refactoring guarantee simple development and expandability of 

the project making it more comprehensible  and advances the quality of the code. K.Ush, N.Poonguzhali ,E.Kavitha  in [7] ―A 

Quantitative Approach for Evaluating the Effectiveness of Refactoring in Software Development Process‖ conducted various 

experiments based on refactoring  in the developed model .Research in this proposed method extend refactoring in three phases, 

Identification, Proposal and Application. The Evaluation criteria‘s are  Reusability, Understandability, Maintainability. In evaluation 

phase, the effect of refactoring based on evaluation parameters is quantified using software metrics. From the execution results, it is 

concluded that, refactoring phase in the software development increases reusability and understandability of the code, thus boosting 

maintainability of the code. M. Kleyman, S.Tyszberowicz, A.Yehudai in [6] ―Refactoring Aspects into Java Code‖ declared 

transformation through refactoring. This opposite transformation is done by ACME i-e generation of a object oriented structure 

through refactoring. It can be when a structural change that makes aspect inappropriate is required. In several cases, aspects are  not 

utilized just as some organizations avoid in production code. But now ACME allows use of aspect is possible and object oriented code 

can be obtained according to requirement. Without changes in already existing classes ACME allows implementation modifications. 

Automatic refactorings can be done. However, it will be an addition to the core functionality of ACME. It depends on programmer, if 

he wants to apply conversions on aspects. The case study presents that  without  intentions of using ACME, it is possible to convert 

aspects. S.A.M.Rizvi, Zeba Khanam  in [8] ―A Methodology for Refactoring Legacy Code‖  organized methodology which is 

embraced based on refactoring. First of all, the purpose to make the intact process is defined. Selection of refactoring patterns from the 

existing and new catalog is done after creating the goal. Next step is to determine the application of refactorings. The development 

team can then explore refactoring opportunities and assess the effects and results of refactoring. Systematically, refactoring can be 

applied to move in the correct path instead of applying on different inventories. Bart Du Bois, et al in [12]  ―A Discussion of 

Refactoring in Research and Practice‖ in their research paper demonstrates that software refactoring is revolving efficiently, different 

business tools for refactoring are increasing swiftly, but there are a large number of issues that still require consideration and  solution. 

In refactoring research, they deal with action-preservation, assembling responses and feedback on refactoring implementation and 

assimilation with MDA and AOSD for future research work. There is requirement for procedures, techniques and tools that tackle 

refactoring in a more constant, aimed, flexible manner. Raimund Moser, et al in [13] ―Does Refactoring Improve Reusability?‖ 

examines reusability of adhoc in refactoring is either supported or not. In software development and implementation, reusability 

should be supported at maximum. Refactoring have improved object oriented classes by promoting internal metrics like reusability 

http://www.ijergs.org/


International Journal of Engineering Research and General Science Volume 3, Issue 2,  March-April, 2015                                                                                   
ISSN 2091-2730 

30                                                                                                   www.ijergs.org  

especially in adhoc. The first choice for development code could be refactoring as it enhances many factors like reusability and 

maintainability. 

PROPOSED FRAMEWORK 

In this model scrum methodology is utilized in enhanced form to overcome scrum issues along with refactoring  project  at both  

design and implementation level. The start of development is a simple design and any flexibility problem  if discovered later through 

the process, the design is refactored. Refactoring can be applied to all phases of software development and artifacts ( design, test 

cases, use cases, sequence diagrams  etc).  

1. Refactoring at design and implementation level: 

        In web development ,refactoring can be applied at both design and implementation phase. Implementation phase refactoring is 

similar to code-level refactoring both by convention and structure but in code refactoring we work with object oriented programming 

but in this type all other codetypes like HTML, javascript ,XML etc are also refactored.  

1.1. Design level 

        In this phase  we will focus on navigational refactoring model where  navigational class diagram are transformed that preserve 

operational semantics and navigability. It  means that existing nodes may not become unreachable though the set may be augmented 

(e.g. by splitting a node).Following steps must be considered while doing navigation model refactoring: 

1. Add operations, content and links to the node, already present. 

2. Add a new node  

3. Remove a node with no link i-e unreachable. 

4. If the node does not become unreachable by removing a link, remove it. 

 

       Analysis of application's usage have shown that users repeatedly use forward and backward links when 

navigating a web application. This is because the target link is not the user expected.Too much false link 

activations will lead to frustration and confusion.User will ultimately leave the site.This model provides a 

solution to this problem . 

 
1.1.1.  Anticipate target: 

               By adding a script to the link anchor, a mouse can hover over link which will give a small version of the target page. This 

may be also called interface refactoring and is utilized in advance scripting languages like AJAX. 

 

Figure 1:small version of target information[23] 

1.1.2. Introduce link destination announcement: 

http://www.ijergs.org/


International Journal of Engineering Research and General Science Volume 3, Issue 2,  March-April, 2015                                                                                   
ISSN 2091-2730 

31                                                                                                   www.ijergs.org  

               By adding a script to particular widget or index, mouse can hover over link which will open a pop-up 

menu consisting of all possible operations and functionalities related to that link. The drawback of applying this 

solution is that pop-ups may be blocked or may be annoying for some users. 

 
1.1.3. Introduce scrolling: 

               Use vertical and horizontal scroll bars. 

 

 

 
Figure 2:scroll bars[24] 

1.1.4. Split list: 

              Divide entries of index in several pages. This will make it user friendly. There are plenty of examples 

of this, like Google search results. Example: B-commerce applications usually provide recommendations for 

their products as an effective way of advertising. It has become a trend that emerging website has  a starting 

page with list of products and titles etc. All operations related to it must be shifted to next linked pages. 

 
1.1.5. Add operation: 

              To remove repetitive operations, add operations in main class from where it can be accessed when 

required. For example, if a user want to buy a product then if he is already a customer of that site, all user 

information will be retrieved. User will not have to write details on next product purchase. 

 
 

Figure 3: phases of design level refactoring for web based application 

  
1.2. Implementation level: 

Design level 
(navigation 

based) 

Anticipate 
target 

Introduce link 
destination 

announcement 

Introduce 
scrolling 

Add operation 
Split list 

http://www.ijergs.org/


International Journal of Engineering Research and General Science Volume 3, Issue 2,  March-April, 2015                                                                                   
ISSN 2091-2730 

32                                                                                                   www.ijergs.org  

       Improvement of code clarity and enhancing maintainability and usability are the main objectives of refactoring. Therefore it is 

reasonable to evaluate the refactoring effect in terms of: 

1. Maintainability 

2. Reusability  

3. Understandability 

 

1.2.1. Refactoring through code smell: 

              This is identification phase where source code area to be refactored is identified. This is done by means of code smell 

detection. Normally there are two types of bad smell: 

1. Duplicated code : By unifying these parts code is enhanced 

2. Lazy class (class that does not play significant role): They may be excluded by adjusting their functionality somewhere 

else in the source code. 

 

1.2.2. Selection of metrics: 

               Refactoring can be implemented in two modules: 

1. Selection of appropriate quantification metrics for maintainability, reusability and understandability. 

2. Measuring and comparing metrics before and after refactoring. 

 

              Popular metrics suites are Halstead's Complexity Measures [17], McCabe's. Cyclomatic Complexity [9] and Maintainability 

Index[18]. 

1.2.3. Effect of Refactoring based on Complexity Measure: 

             NOA: Number of attribute metrics is used to count the average number of class and instance variable.A class with large 

number of variables indicates cohesion. Class requires further decomposition to manage complexity. Number of attributes > 10 

indicates poor design. 

            NOM: number of methods in a class. A class must not have excessive number of methods in it. 

           TLOC: Total lines of code in class metric  will count the non-blank and non-comment lines in a class. Size of the system can be 

easily measured through it. 

           NOC: Number of classes in package.The overall size of the system can be estimated by finding the number of classes it 

contains. system with more classes become complex because object interaction is higher. 

           CC (m): Cyclomatic Complexity in a method . It measures the number of linearly independent paths through a system program 

module. The amount of decision logic in each software module is measured. 

1.2.4. Effect of Refactoring based on Modularity Measure: 

               Coupling between Objects (CBO):Coupling measurement is done . when one class uses functions or variables of another 

class then coupling is said to occur. Understandability and maintainability become difficult. C&K suggest CBO as an indicator for 

evaluation of effort required for maintenance.  CBO was found to be helpful in detecting highly coupled classes [19]. In [20], presents 

that maximum value for CBO is 30 and min value to be o. 

             Coupling Factor (CF): computes the ratio of number of pairs of classes that are coupled with each other to total number of 

possible couplings in a given system of classes [20]. 

            Lack of cohesion among Methods (LCOM):The metric counts the number of methods ‗pairs in the class using no attributes in 

common, minus the number of pairs of methods that do. 

http://www.ijergs.org/


International Journal of Engineering Research and General Science Volume 3, Issue 2,  March-April, 2015                                                                                   
ISSN 2091-2730 

33                                                                                                   www.ijergs.org  

 

1.2.5. Applying and comparing results: 

 Average Number of Attributes will make the code simple and less 

 Decrease in Average Number of Methods makes the code simple. Class is not overloaded with more functionality. 

 System with few classes will be understandable and easier. 

 Decrease in the average Cyclomatic complexity reduces The system complexity 

 Decrease in the value of CBO improves reusability which decreases the dependencies exits between classes. 

 Maintains Moderate values for CF enhances maintainability and reusability without any side effects 

 Decrease value of LCOM  increases cohesion values, thereby improving reusability and Understandability of the code 

 

Scrum  artifacts that is proposed  to change to work better in Network Organizations. 

1. Task-feasibility instead of time-estimation:  

        Instead of using formal time estimates ,it is focused  to commit only those user stories which are realistic to implement before 

next session.Through this change, commitment is limited, which is unable to obtain. 

2. Report Meeting instead of Sprint Review Meeting: 

       We propose to limit participants only to representatives of the customer and the team because sprint review meetings require lot 

of resources (i-e participants) .This type of meeting should be held more frequently  in order to improve performance and 

requirements gathering between customer. 

 

                                                       Figure 4: phases of implementation level refactoring 

3. Key Performance Indicators: 

       An item of information collected to track the performance of a system is known as performance in indicator [22].In scrum, 

indicators are used  as time-estimate of the remaining work amount that needs to be done versus amount of User stories that are 

considered  done in Sprint Backlog [21].It is pro-posed to use the following KPI's (i.e. Key Performance Indicators) that help better 

control software development in Net-work Organization: 

• Reliability: to measure if the team is successful in achieving the desired. The difference between the amount of committed Story 

Points (ci) and delivered Story Points is represented as percentage of reliability calculated per  Sprint (Ri) can be calculated as. 

Ri= ci/di *100%                        (1) 

http://www.ijergs.org/


International Journal of Engineering Research and General Science Volume 3, Issue 2,  March-April, 2015                                                                                   
ISSN 2091-2730 

34                                                                                                   www.ijergs.org  

• Productivity: to measure project velocity.The  amount of fixed bugs (bi) and newly implemented re-quirements (si) are represented 

as the  value of produc-tivity (Pi) after delivery of each sprint should be calculated as : 

Pi= bi + Si                               (2) 

• Effectiveness: to evaluate effectiveness of testing service by measuring the amount of defects delivered to the customer. The ratio 

between all found defects (ai) and those found by external S (ei) providing complementary testing are measured to calculate the 

effectiveness of internal testing service Based on this KPI. This shows effectiveness (Ei) of soft-ware development team and testing 

services: 

Ei =ai-ei/ai*100%                      (3) 

2. Scrum Enhancement: 

2.1. Security Backlog: 

By analyzing the phases in scrum it is analyzed that in first phase i-e planning the approved product is used .User/client approve this 

product and the users/clients do not know much about security risks. An extra backlog can be managed  to overcome security risks  

well without affecting the agility of this method. For this, an additional role, called "Security Master‖ is introduced . The Security 

Backlog follows existing security principle so that security issues can be reduced. the features in Product Backlog are made security-

pruned by the addition of security backlog. No feature should miss its security concern.  The features in Product Backlog will go 

through Security Backlog. Only the certain features in the product backlog  are figured out  by the security master that require the 

security attention. The security requirements for the selected features in security backlog are marked. The testing part will be 

conducted  and the marked security concerns will be carried forward to sprint backlog for developers‘ attention. The features selected 

by the Scrum Master are processed as usual like other processes. It is also helpful to highlight  the development team and client wish 

to discuss about the security requirement or anything related to security to the features. The Security Backlog is related to technical 

skill to identify and overcome the security risks, so it is also  recommend to make a security education first through training to 

developer and stakeholder to make sure their security awareness are satisfied.  

 

Figure 5: phases of implementation level refactoring 

 CONCLUSION 

In this research work initially a refactoring methodology at design and implementation level is proposed. An approach for design  

refactoring in Web applications is presented specifically. It is based on the view of modern Web engineering methods and it considers 

http://www.ijergs.org/


International Journal of Engineering Research and General Science Volume 3, Issue 2,  March-April, 2015                                                                                   
ISSN 2091-2730 

35                                                                                                   www.ijergs.org  

refactorings to the navigation and presentation design models. It is demonstrated how refactorings can help Web applications evolve 

by applying well-known Web patterns into their design, in order to improve quality in use properties, such as usability. At 

implementation level, metrics are selected and their effects are described .The Evaluation parameters are taken as Maintainability, 

Reusability and Understandability. It is  conclude that, refactoring activity in the software development process leads to improvement 

in reusability and Understandability of the code, thereby enhancing maintainability of the code. Further, scrum method is enhanced by 

introducing security backlog and monitoring of indicators in report meetings. this will be cost-effective and secure. Usability level and 

user understanding is also improved. 

FUTURE WORK 

Methodology based on design refactorings for all applications in addition to web applications. The proposed methodology can be 

practically implemented in software development processes . 

ACKNOWLEDGMENT 

We would  like  to  thank  our supervisor Assistant Prof. Ali Javed  for  being  very  encouraging and supportive throughout which 

helped me to complete the research paper very smoothly.We would like to thank our family and friends for being supportive with us 

all through our work 

 

REFERENCES: 

[1]   Lindstrom, L. & Jeffries, R. ―Extreme programming and agile software development methodologies‖. Information Systems 

Management. 21(13), 41-53. 2005. 

[2]  Holmstrom, H., Fitzgerald, B., Agerfalk, P., & Conchuir, E. ―Agile practices reduce distance in global software development 

.Information Systems Development‖. 23(3), 7-18. 2006. 

[3]  Tom Mens, Tom Tourw , "A Survey of Software Refactoring", IEEE Transactions On Software Engineering, Vol. Xx,No. Y,Month 

2004 Frank Simon, Frank Steinbruckner, Claus Lewerentz,"Metrics Based Refactoring", 2001 IEEE 

[4]   Frank Simon, Frank Steinbruckner, Claus Lewerentz, "Metrics Based Refactoring", 2001 IEEE 

[5]   Mann, C. & Maurer, F.‖ A case study on the impact of scrum on overtime and customer satisfaction.‖, Proceedings of the Agile 

development Conference (ADC‘05). Denver, CO. 70-79. 2005. 

[6] M. Kleyman, S.Tyszberowicz, A.Yehudai, ―Refactoring Aspects into Java Code‖ in 2007 IEEE International Conference on 

Software – Science, Technology and Engineering 

 

[7] K.Ush,N.Poonguzhali ,E.Kavitha, ―A Quantitative Approach for Evaluating the Effectiveness of Refactoring in Software 

Development Process‖ in International Conference on Methods and Models in Computer Science, 2009 

 

[8]  S.A.M.Rizvi,  Zeba Khanam ,―A Methodology for Refactoring Legacy Code‖ , 978-1-4244-8679-3/11/$26.00 ©2011 IEEE   

 

[9]  Karim M. Zaki, Ramadan Moawad, ―A Hybrid Disciplined Agile Software Process Model‖ 

 

[10]  A. Ahmed, S. Ahmad, Dr. N. Ehsan, E. Mirza, S. Z. Sarwar, ―Agile Software Development: Impact on Productivity and Quality‖   

 

[11]  Manjunath K N, Jagadeesh J, Yogeesh M, ―Achieving quality product in a long term software product development in healthcare 

application using Lean and Agile principles‖ , 978-1-4673-5090-7/13/$31.00 ©2013 IEEE 

 

[12]  Bart Du Bois, Pieter Van Gorp, Alon Amsel, Niels Van Eetvelde, Hans Stenten, and Serge Demeyer, Tom Mens, ―A Discussion 

of Refactoring in Research and Practice‖  

 

[13] Raimund Moser, Alberto Sillitti, Pekka Abrahamsson, and Giancarlo Succi ,―Does Refactoring Improve Reusability?‖ in M. 

Morisio (Ed.): ICSR 2006, LNCS 4039, pp. 287– 297, 2006. © Springer-Verlag Berlin Heidelberg 2006 

 

http://www.ijergs.org/


International Journal of Engineering Research and General Science Volume 3, Issue 2,  March-April, 2015                                                                                   
ISSN 2091-2730 

36                                                                                                   www.ijergs.org  

[14]  Jeffery A. Livermore, ―Factors that Impact Implementing an Agile Software Development Methodology‖ 

 

[15] Boehm, B. & Turner, ―R. Management challenges to implement agile processes in traditional development organizations‖ IEEE 

Software. 22(5), 30-40. 2005. 

 

[16]  http://www.mountaingoatsoftware.com/agile 

 

[17] M. H. Halstead, "Elements of software science", Operating and Programming Systems Series, 7,1977. 

[18] K. D. Welker and P. W. Oman, "Software maintainability metrics models in practice. Crosstalk" - The Journal of Defense 

Software Engineering, 8(11): 19-23, 1995. 

[19] M. Lorenz and 1. Kidd, "Object-oriented Software Metrics", Prentice Hall Object-Oriented Series, 1994 

[20] F. Brito eAbreu, M. Goulao, and R. Estevers, "Toward the Design Quality Evaluation of OO Software Systems," Proc. Fifth Int'l 

Conf. Software Quality, 1995. 

[21] N.   Zabkar,  V.  Mahnic,   "Using   COBIT   indicators   for  measuring  Scrum-based   software   development",  WSEAS   

Transactions   on Computers, vol. 7, no. 10, pp. 1605-1617, 10 2008. 

[22] C.   T.   Fitz-Gibbon,   Bera   Dialogues:   2,   Performance   Indicators, Clevedon, England, Multilingual Matters,  1990, pp. 111. 

[23]http://uxdesign.smashingmagazine.com/2011/10/20/comprehensive-review-usability-user-experience-testing-tools/ 

[24]http://stackoverflow.com/questions/16651364/nexus-4-android-tap-to-scroll-issue 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.ijergs.org/
http://www.mountaingoatsoftware.com/agile

