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ABSTRACT- Wavelet transforms and other multi-scale analysis functions have been used for compact signal and image 

representations in de-noising, compression and feature detection processing problems for about twenty years. The wavelet transform 

itself offers great design flexibility. Basis selection, spatial-frequency tiling, and various wavelet threshold strategies can be optimized 

for best adaptation to a processing application, data characteristics and feature of interest. One of the most important features of 

wavelet transforms is their multi-resolution representation. In this paper the complete wavelet family is analysed with its in 

combination in best with Wiener Filter aiming to denoise at the same time. The medical Nanoscopic TEM image will be analysed with 

different wavelets. The filtered image is further analysed on the basis of Mean, MSE, SNR & PSNR. 
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I INTRODUCTION TO BIOMEDICAL IMAGES 

 

One of the most fundamental problems in signal processing is to find a suitable representation of the data that will facilitate an 

analysis procedure. One way to achieve this goal is to use transformation, or decomposition of the signal on a set of basis functions 

prior to processing in the transform domain. Transform theory has played a key role in image processing for a number of years, and it 

continues to be a topic of interest in theoretical as well as applied work in this field. Image transforms are used widely in many image 

processing fields, including image enhancement, restoration, encoding, and description. [10][11] 

 

II INTRODUCTION TO WAVELETS AND WIENER FILTER 

 

Historically, the Fourier transform has dominated linear time-invariant signal processing. The associated basis functions are complex 

sinusoidal waves  that correspond to the eigenvectors of a linear time-invariant operator. A signal  defined in the temporal 

domain and its Fourier transform , defined in the frequency domain, have the following relationships. 

 

   (1) 

  (2) 

Fourier transform characterizes a signal  via its frequency components. Since the support of the bases function  covers the 

whole temporal domain (i.e infinite support),  depends on the values of  for all times. This makes the Fourier transform a 

global transform that cannot analyze local or transient properties of the original signal .  

In order to capture frequency evolution of a non-static signal, the basis functions should have compact support in both time and 

frequency domain. To achieve this goal, a windowed Fourier transform (WFT) was first introduced with the use of a window function 

w(t) into the Fourier transform: 

        (3) 

The energy of the basis function  is concentrated in the neighbourhood of  time  over an interval of size , 

measured by the standard deviation of . Its Fourier transform is , with energy in frequency domain 

localized around , over an interval of size . In a time-frequency plane , the energy spread of what is called the atom 

 is represented by the Heisenberg rectangle with time width  and frequency width . The uncertainty principle states that 

the energy spread of a function and its Fourier transform cannot be simultaneously arbitrarily small, verifying:  

                           (4) 
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Shape and size of Heisenberg rectangles of a windowed Fourier transform therefore determine the spatial and frequency resolution 

offered by such transform. [6] 

Examples of spatial-frequency tiling with Heisenberg rectangles are shown in Figure 1. Notice that for a windowed Fourier transform, 

the shape of the time-frequency boxes are identical across the whole time-frequency plane, which means that the analysis resolution of 

a windowed Fourier transform remains the same across all frequency and spatial locations. 

 

 
 

Figure 8: Example of spatial-frequency tiling of various transformations. x-axis: spatial resolution. y-axis: frequency resolution. (a) 

discrete sampling (no frequency localization). (b) Fourier transform (no temporal localization). (c) windowed Fourier transform 

(constant Heisenberg boxes). (d) wavelet transform (variable Heisenberg boxes). 

To analyze transient signal structures of various supports and amplitudes in time, it is necessary to use time-frequency atoms with 

different support sizes for different temporal locations. For example, in the case of high frequency structures, which vary rapidly in 

time, we need higher temporal resolution to accurately trace the trajectory of the changes; on the other hand, for lower frequency, we 

will need a relatively higher absolute frequency resolution to give a better measurement on the value of frequency. We will show in 

the next section that wavelet transform provide a natural representation which satisfies these requirements, as illustrated in Error! 

Reference source not found. (d).[9] 

III DISCRETE WAVELET TRANSFORM 

 

Given a 1-D signal of length N, , the discrete orthogonal wavelet transform can be organized as a sequence 

of discrete functions according to the scale parameter : 

     (5) 

Where 

 and . 

Wavelet coefficients at scale  have a length of  and the largest decomposition depth J is bounded by the signal 

length N as ( ). 

For fast implementation (such as filter bank algorithms), a pair of conjugate mirror filters (CMF) h and g can be constructed from the 

scaling function and wavelet function  as follows: 

 and                      (6) 

A conjugate mirror filter k satisfies the following relation: 

 and              (7) 

It can be proven that h is a low-pass filter, and g is a high-pass filter. The discrete orthogonal wavelet decomposition in Equation (5) 

can be computed by applying these two filters to the input signal, and recursively decompose the low-pass band, as illustrated in 

Error! Reference source not found..   

For orthogonal basis, the input signal can be reconstructed from wavelet coefficients computed in Equation (5) using the same pair of 

filters, as illustrated in Error! Reference source not found..  

It is easy to prove that the total amount of data after a discrete wavelet expansion as shown in Error! Reference source not found. 

has the same length to the input signal. Therefore, such transform provides a compact representation of the signal suited for data 

compression as wavelet transform provides a better spatial-frequency localization. On the other hand, since the data was downsampled 

at each level of expansion, such transform performs poorly on localization or detection problems. Mathematically, the transform is 

variant under translation of the signal (i.e. is dependent of the downsampling scheme used during the decomposition), which makes it 

less attractive for analysis of non-stationary signals. 
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Figure 9: Illustration of orthogonal wavelet transform of a discrete signal f(n) with CMF. A two-level expansion is shown 

 
Figure 10: Illustration of inverse wavelet transform implemented with CMF. A two-level expansion is shown 

 

 

 

In image analysis, signal   and a redundant representation needs to be represented. In the dyadic wavelet transform framework 

proposed by Mallat and Zhong, sampling of the translation parameter was performed with the same sampling period as the input 

signal to preserve translation invariance.  

A more general framework of wavelet transform can be designed with different reconstruction and decomposition filters that form a 

bi-orthogonal basis. Such generalization provides more flexibility in the design of the wavelet functions. In that case, similarly to 

Equation (5), the discrete dyadic wavelet transform of a signal s(n) is defined as a sequence of discrete functions 

  (8) 

where ( ) ( )M MS s n s n   represents the DC component, or the coarsest information from the input signal.  

Given a pair of wavelet function and reconstruction function , the discrete dyadic wavelet transform (decomposition and 

reconstruction) can be implemented with a fast filter bank scheme using a pair of decomposition filters H, G and a reconstruction filter 

K . 

  

  (9) 

  

where s is a dependent sampling shift. The three filters satisfy: 

  (10) 

Defining , where F is either H, G or K, we can construct a filter bank implementation of the discrete dyadic 

wavelet transform as illustrated in Error! Reference source not found.. Filters 
 
defined at level m+1 (i.e., filters applied at 

wavelet scale ) are constructed by inserting  zeros between subsequent filter coefficients from level 1 ( ). Non-

integer shifts at level 1 are rounded to the nearest integer. It has a complexity that increases linearly with the number of analysis 

levels.[9][12] 
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In image processing applications, we often deal with two, three or even higher dimensional data. Multi-dimensional wavelet bases can 

be constructed with tensor products of separable basis functions defined along each dimension. In that context, a N-D discrete dyadic 

wavelet transform with M analysis levels is represented as a set of wavelet coefficients:  

  (11) 

11where  represents the detailed information along the kth coordinate at  

scale m. The wavelet basis is dilated and translated from a set of separable wavelet functions as for example in 3D: 

  (12) 

 

In this framework, reconstruction with a N-D dyadic wavelet transform requires a non-separable filter  to compensate the inter-

dimension correlations. This is formulated in a general context as: 

  (13) 

 

 

 
Figure 11: Filter bank implementation of a one-dimensional discrete dyadic wavelet transform decomposition and reconstruction for 

three levels of analysis. denotes the complex conjugate of  

 
 

Error! Reference source not found. illustrates a filter bank implementation with a multi-dimensional discrete dyadic wavelet 

transform 

 

IV WAVELET FAMILY 

 

Wavelet families vary in terms of several important properties. Examples include: 
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 Support of the wavelet in time and frequency and rate of decay. 

 Symmetry or antisymmetry of the wavelet. The accompanying perfect reconstruction filters have linear phase. 

 Number of vanishing moments. Wavelets with increasing numbers of vanishing moments result in sparse representations for 

a large class of signals and images. 

 Regularity of the wavelet. Smoother wavelets provide sharper frequency resolution. Additionally, iterative algorithms for 

wavelet construction converge faster. 

 Existence of a scaling function, φ.[3][7][8] 

 

Haar wavelet is discontinuous, and resembles a step function. It represents the same wavelet as Daubechies db1. 

 
Daubechies, one of the brightest stars in the world of wavelet research, invented what are called compactly supported orthonormal 

wavelets — thus making discrete wavelet analysis practicable. The names of the Daubechies family wavelets are written dbN, where 

N is the order, and db the "surname" of the wavelet. The db1 wavelet, as mentioned above, is the same as Haar wavelet. Here are the 

wavelet functions psi of the next nine members of the family: 

 
Biorthogonal 

This family of wavelets exhibits the property of linear phase, which is needed for signal and image reconstruction. By using two 

wavelets, one for decomposition (on the left side) and the other for reconstruction (on the right side) instead of the same single one, 

interesting properties are derived. 

 
 

Coiflets 

Built by I. Daubechies at the request of R. Coifman. The wavelet function has 2N moments equal to 0 and the scaling function has 2N-

1 moments equal to 0. The two functions have a support of length 6N-1. 
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Symlets are nearly symmetrical wavelets proposed by Daubechies as modifications to the db family. The properties of the two wavelet 

families are similar. Here are the wavelet functions psi. 

 
Dmeyer 

The Meyer wavelet and scaling function are defined in the frequency domain. 

 

 
 

V PROPOSED ALGORITHM 

 

It makes use of two level DWT. In first level DWT , a single level two dimensional wavelet decomposition and does soft thresholding 

by using mask filter for high frequency subband. At second level of DWT, it again do soft thresholding by further doing the single 

level two dimensional decomposition of on the approximation coefficient obtained in first level decomposition. It use wiener filter .i.e 

uses low pass filters a image that has been degraded by a constant power additive noise. It makes use of pixelwise adaptive wiener 

method based on the statistics estimated from a local neighborhood of each pixel. It then applies inverse 2D wavelet transform for 

second level decomposition. Then, applies the same for the first level decomposition. It De-noises image using Wiener filter for Low 

frequency domain and using new equation as a soft-thresholding for de-noise high-frequencies domains [5].This filter takes five things 

as input parameters namely, an input image Im, name of the wavelet family wname, mask filter used for low frequency sub-band 

MASKL, mask filter used for high frequency sub-band MASKH, factor >=0.001, used to decrease or increase estimated power of a 

noise used by wiener filter. [2][4] 

 

Most importantly, in this paper we have analysed molecular images specially nanoscopic TEM images for different wavelet family. 

The wavelet family for which it has been analysed are Haar, Daubechies, Biorthogonal , Coiflets, Symlets, Reverse Biorthogonal, 

Discrete approximation of Meyer Wavelet. 

 

Firstly, it computes the number of layers Layer_C, for the number of layers, it performs the following steps: it applies I level discrete 

wavelet transform on the input image, then II level DWT transform of the first coefficient obtained in first level transformation. 

Thereafter, applies soft thresholding on horizontal, vertical & diagonal approximation coefficients obtained in first level DWT. It then 

applies soft thresholding on horizontal, vertical and diagonal approximation coefficients obtained in second level DWT. Then 

maximum additive noise power is computed before applying filter. It then applies wiener filter. After applying filtering process, 

inverse discrete wavelet transform is applied for second level. It then checks number of columns. Thereafter inverse discrete wavelet 

transform is applied for first level. 
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VI WAVELET ANALYSIS DATASHEET 

 

SNR 

Noise 

Intensity Noisy haar coif1 sym2 dmey bior1.1 rbio1.1 

0.001 6.55 6.72 7.69 7.65 7.96 6.74 6.74 

0.003 6.50 6.71 7.63 7.62 7.93 6.69 6.71 

0.005 6.45 6.66 7.60 7.57 7.90 6.68 6.68 

0.007 6.46 6.65 7.55 7.51 7.84 6.65 6.65 

0.1 6.39 6.61 7.51 7.47 7.75 6.58 6.61 

0.3 5.91 6.15 6.91 6.88 7.11 6.13 6.13 

0.5 5.35 5.55 6.19 6.20 6.32 5.54 5.55 

 

PSNR 

Noise 

Intensity Noisy haar coif1 sym2 dmey bior1.1 rbio1.1 

0.001 15.5 16.6 18.3 18.2 18.9 16.6 16.6 

0.003 15.4 16.6 18.2 18.1 18.9 16.5 16.6 

0.005 15.3 16.5 18.1 18.0 18.8 16.5 16.5 

0.007 15.3 16.5 18.1 17.9 18.7 16.5 16.5 

0.1 15.2 16.4 18.0 17.9 18.6 16.4 16.4 

0.3 14.4 15.7 17.0 16.9 17.5 15.7 15.7 

0.5 13.5 14.8 15.8 15.8 16.1 14.7 14.8 

 

 
 

VII CONCLUSION 

 

The basic idea of wavelet analysis is to use a cluster of wavelet functions to express a signal. It has a high time-frequency resolution in 

low frequency bands, a high time resolution and low frequency resolution in high frequency bands. The decomposition sequence 

obtained with Fourier transform has a high time-frequency resolution and same bandwidth in the whole time-frequency domain. This 

indicates the special feature of the given signal. The dmey wavelet family proved better results when implemented with Fourier 

transform along with Wiener Filter to reduce noise at the same time enhancing the image  
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