
International Journal of Engineering Research and General Science Volume 3, Issue 3, May-June, 2015                                                                                   
ISSN 2091-2730 

1019                                                                                                   www.ijergs.org  

Efficient Dynamic SPT algorithm for Network Routing 

Snehal Kolte 

M. E. (C.E.) Second Year 

Department of computer engineering, DYPSOE, 

Pune University, Pune, Maharashtra, India 

Email: snehalkolte2010@gmail.com 

Soumitra Das 

H.O.D. 

Department of computer engineering, DYPSOE, 

Pune University, Pune, Maharashtra, India 

Email: soumitra_das@yahoo.com 

Abstract— Implementing a high speed routing is important in the network. Each router has a database maintained having whole 

network system topology in routing table. Each router should update its routing table rapidly if network topologies get modified to 

maintain high routing speed. There are several methods to achieve such functionality. Old classical method doesn’t provide a 

satisfactory solution for rapidly changing networks topology. The fast construction of Shortest Path Tree (SPT) is important to achieve 

fast routing speed in a network. Whenever the network topology changes, the old shortest path tree must be updated fast. This paper 

presents improvements to existing landmark based shortest path estimation methods. The proposed dynamic algorithm constructs new 

SPT as network topologies get changed.in this dynamic algorithm, only edges which got weight changed and contributes to the 

construction of the new SPT will be considered and SPT is constructed dynamically.. 

Keywords— dynamic routing, shortest path, network routing, Shortest path Tree (SPT), Local Landmarks, Weighted Graph, Static 

Routing algorithms, Dynamic routing. 

INTRODUCTION 

Network Routing is a process which is choosing a way of sending communication data in a certain network. Network routing process 

is usually performed based on a routing table that manages various network destinations’ routes. Therefore, the routing table formation 

written in a memory of the router is very important for effective routing. There are many graph algorithm methods used in routing 

algorithms. Each link is composed of a pair of Nodes. In a network routing, the nodes of graphs represent routers, and the links which 

connect these nodes represent physical links between routers. 

 

In today’s Internet, demands for broadband Internet Applications have grown rapidly. Therefore, high speed routing has become more 

important at Open Shortest Path First (OSPF) which is the most used intra-autonomous system routing protocols. When topological 

changes occur due to an unexpected situation at the OSPF, network routing algorithms are used to update the routing table. For 

example, if there is a link failure in a network, then the Shortest Paths have to be re-computed[13]. Normally in this case, the shortest 

paths computation is performed by re-running the algorithm. However, when links acquire new weights in a network, the SPT whole 

SPT gets updated which can increase the computation time and cause unnecessary corrections by repeating its operation in all of the 

nodes where the link’s weight does not change. 

 

However, this well-studied static algorithm becomes very inefficient when a small portion of the SPT needs to be updated in a 

network. This is because one link change results in computation of the full tree in each router and entries updating in its routing table 

[4],[5]. In many cases, the new SPT shows a little modification compared with the old SPT[11],[12] or no difference at all. The static 

algorithm for the SPT [6],[7] update is having a lot of unnecessary computing and routing table entry updates. Thus, it is very 

important that algorithms for dynamically updating SPT should get introduced to handle the link state changes in a network efficiently. 

 

This happens because one link change results in re-computation of the whole tree in every router and entries updating in its routing 

table. The new SPT shows a little modification compared with the old SPT or no difference at all. The method using the static 

http://www.ijergs.org/
mailto:snehalkolte2010@gmail.com


International Journal of Engineering Research and General Science Volume 3, Issue 3, May-June, 2015                                                                                   
ISSN 2091-2730 

1020                                                                                                   www.ijergs.org  

algorithm for the SPT update incurs a lot of unnecessary computing and routing table entry updates. Thus, it is very important that 

algorithms for dynamically updating SPT are introduced to handle the link state changes in a network efficiently. To get less 

computation time, the updating process to separate weight-increase operations and weigh- decrease operations is proposed for 

dynamic SPT [8],[ 9] update. In this paper, a new algorithm is proposed based on the analysis of the probability of edges used to the 

construction of the new SPT. 

 

The number of edges considered in the new algorithm is far less than any other algorithms [8],[10]. The proposed algorithm not only 

reduces the computational complexity required to update an old SPT, but also maintains the routing table stability by keeping the 

topology of an old SPT. 

 

EXAMPLE 

In an example of Figure 1, A graph is shown, each node is labeled with letters (A to P), represents a routers. And the weight of one link 

between two nodes represents a link state cost means network traffic delay time between two routers. If an edge e is u  v, node u is 

the source node of the edge while node v is the end node. The number inside each node specifies the shortest distance from the source 

node A (tree node) based on the given graph. 

 

Figure.1. Network with their weight (delay Time) 

 

Take a simple example where the weight of edge from node B to G decreases from 7 to 2, then the SPT needs to update. The shortest 

paths for nodes outside of the area encircled can be the same in both the old and new SPT. While for nodes inside the area within the 

circle, their SPT should be updated. These nodes are all child of node G (including G itself) following the old SPT. The new SPT is 

shown in Figure 2. We will figure out the underlying properties to dynamically generate the new SPT from the old one. 

 

Figure.2. Network with their weight (delay Time) 

 

For all nodes encircled, their shortest distances can be either decreased by 2 if their shortest paths follows the ways in the old SPT, or 

decreased not much (more than 2) by selecting some other paths through nodes outside of the circle. For the nodes inside the area 

encircled, i.e. G,J,K,N, P, there may exist several incoming edges to them. Each incoming edge can make its end node by a new 

distance from the tree node A. Only the edge with the smallest increment to a node, which needs to be updated, should be considered 

to satisfy the shortest distance property. 

http://www.ijergs.org/


International Journal of Engineering Research and General Science Volume 3, Issue 3, May-June, 2015                                                                                   
ISSN 2091-2730 

1021                                                                                                   www.ijergs.org  

 

Figure.3. (a) Nodes with one incoming edge to denote the smallest increments; (b) The useful edges to construct the new SPT 

 

 For example, edge (C,G) and (B,G) can both reach node G. Through the former edge, the shortest distance to node G will be 

decreased. Thereby, edge (B,G) is meaningful for the updating process while edge (C,G) is not. We list all significant edges in Table 1.  

 

Node G J K N P 

Incoming Edge (B,G) (F,J) (G,K) (J,N) (K,P) 

Decreased Value 3 3 3 3 3 

Included or Not Yes Yes Yes Yes Yes 

 

Table.1. AN EXAMPLE OF A TABLE 

In Table 1, nodes that should get updated are listed in the first row. The edge in the second row indicates the new path to its end node 

with the smallest decrement value compared with the old shortest distance. And the third row is the represents a decreased value. 

 

For example, if the updated shortest distance path to node P goes through edge (K, P), the new distance should be 26-3 = 23. The 

Significant Edge is defined in this paper as the edge only in the new SPT (not in the old SPT).  

 

All updated edges in Table 1 will get added to a queue Q. Q is an edge list that includes some edges with related information. The 

nodes to be updated and their related edges are shown in Figure 3(a). Every incoming edge has a cost to show the increment to the 

shortest distance of its end node if the shortest path through the edge. The number in the node is the smallest increased value among 

all its incoming edges. As we can see that only smaller portion of the SPT is getting updated as weight of the one node changes. Few 

have never been used, such as edges (M, P), (F, J) and (I, N). Thus, we do not need to put them into the edge set Q first and remove 

them later. If we only keep the incoming edge on condition that has increased its value is smaller than the ones of all its ancestor 

nodes, the new graph can be looked like Figure 3(b). The number in the node is the smallest one either from the decrements by its 

incoming edges, or from the value of its ancestors. The graph of changed weight can be easily calculated using Depth-First-Search 

algorithm, which is a comparison of its parent’s value and the smallest increased value among its all incoming edges.  

 

If we updates only the nodes which got weight changed, the computation time of SPT will be much lesser than that of computing a 

whole new SPT from old one. 

DYNAMIC SPT ALGORITHM 

Static routing algorithms should be applied when computing the shortest paths where some links have new weights near the root node. 

The reason that static routing algorithms are applied in this situation is because there are a lot of nodes which have to be computed 

near the root node. In this case, using static routing algorithms is a better method to compute the shortest paths rather than using the 

dynamic routing algorithms which need more computation time for each node. 

 

1. Mathematical Model 
 

Input: G is a simple directed graph, M specifies set of node for the case of the weight of an edge increased/ decreased. 

Original weight wt and changed weight wt’. 

 

Output: The updated SPT rooted at s in the updated graph G. 

http://www.ijergs.org/


International Journal of Engineering Research and General Science Volume 3, Issue 3, May-June, 2015                                                                                   
ISSN 2091-2730 

1022                                                                                                   www.ijergs.org  

System: 

Let, Set of nodes S = {l1, l2,…., lk}  V 

Where, 

nodes  lk and V are is set of nodes. 

Let G = (v, E, wt) denote a directed graph constructed using set of nodes. 

Where, 

V is the set of nodes, 

E is the set of edges 

wt represents the weight of each edge in E in the graph. Given an edge e : i  j 

Where,  

i is the source node and j is the destination node of e. 

Wt’ (edg) is used to show the new weight of edge e. 

a temporary SPT with S (G) as the root is maintained. When the update process is terminated, the temporary tree becomes the 

final new SPT.  

Let d = D(i) + wt’(edg) - D(j)  

Where, 

d represents the increment value to node j if the shortest path to node j through the edge e. Sometimes d can be negative if the 

weight of edge e becomes smaller. 

 
2. Dynamic SPT: 

Dynamic SPT algorithm is as below: 

Input: G is a simple directed graph, M specifies set of node for the case of the weight of an edge increased/ decreased. 

Original weight wt and changed weight wt0. 

Output: The updated SPT rooted at s in the updated graph G. 

Step 1: From G = (V, E) having SPT constructed. 

Step 2: wait until one edge edg : i  j changed its weight from wt(edg) to wt’(edg). Apply Dynamic routing algorithm and 

update routing table. 

Step 3: Dynamic routing  

Find shortest paths by dynamic routing  

G=(V,E) SPT algorithm of only changed portion of SPT 

Initialization des(e) are updated  

following the sequence of DFS from node e in SPT  

http://www.ijergs.org/


International Journal of Engineering Research and General Science Volume 3, Issue 3, May-June, 2015                                                                                   
ISSN 2091-2730 

1023                                                                                                   www.ijergs.org  

   // all descendants of updated  

Remove edges from Q which have end nodes belonging to des(e)  

Update the old information in Q  

Obtain a Temporary SPT  

While(des(e))  

{des(e), mis_inc} ← extract(M)  

If v has incoming links between des(e), then  

if D(i) from incoming link > D(j) from inner nodes,  

then D(i) = D(j)  

endif  

endif  

Update the routing . 

Alternatively, dynamic routing algorithms should be applied to compute the shortest paths when some links have new weights near the 

end node. The reason that dynamic routing algorithms are applied in this case is that there are only a few nodes which have to be 

computed near the end node. In this case, using dynamic routing algorithms to re-compute only the nodes affected by old shortest 

paths is better than using the static routing algorithms which re-compute every node 

PERFORMANCE EVALUATION 

The performance of the Dynamic SPT algorithm is compared to classical SPT algorithm. The number of nodes, the changed link 

weights were used for the input parameters in the simulations.  The computation time calculated with the new algorithm and old static 

algorithm is compared for the case of one edge weight change. New algorithm introduces the node list M when the weight of an edge 

increased and directly updates the node set des(j) when the weight of an decreased. These methods greatly reduce the time to enqueue 

and dequeue edges from Q and consequently have less time to search for the edge with the minimum value in Q. In the simulation (a 

program which calculates the computation time when weight changes using algorithm) for a specific network size, 100 continuous 

weight changes is tested based on one generated graph. The performance comparison between the new algorithm and old SPT for 

different ranges of edge weight is shown in figure 4 and 5. 

     

Figure.4. Computation Time over proposed SPT vs old SPT   Figure.5. Search Time in network over proposed SPT vs old SPT 

(time taken vs no of nodes weight changes) 

  

0

200

400

600

5 10 15

OLD SPT

Propose
d SPT

0

200

400

600

800

5 10 15

OLD SPT

Proposed
SPT

http://www.ijergs.org/


International Journal of Engineering Research and General Science Volume 3, Issue 3, May-June, 2015                                                                                   
ISSN 2091-2730 

1024                                                                                                   www.ijergs.org  

CONCLUSION 

 
Proposed Dynamic algorithm present an efficient shortest paths construction used to minimize the total execution time. Less total 

execution time provide to reduction in packet loss. As shown in the comparison output, the proposed algorithm provides a better 

performance when it compared to the older method in terms of the computation time of the shortest path tree. This algorithm minimize 

the calculation time and only smaller number of changes are made to SPT structure. Thus, it removes the disadvantage caused by static 

algorithms for SPT update like updating of the whole SPT if there is any change. 

ACKNOWLEDGMENT 

I would like to articulate deep gratitude to author Prof. Soumitra Das, Head of Computer Engineering Department who has always 

been a source of motivation and firm support for carrying out the paper. I would also like to convey our sincerest gratitude and 

indebtedness to all other faculty members and staff of Department of Computer Engineering, D Y Patil School of Engineering, Pune, 

who bestowed their great effort and guidance at appropriate times without which it would have been very difficult on our Paper Work. 

 

REFERENCES: 

[1] J. Moy, OSPF version 2. Internet Draft, RFC 2178, 1997. 

[2] B. Fortz and M. Thorup, Optimizing OSPF/IS-IS weights in a changing world, IEEE Journal on Selected Areas in Communications, vol. 20, 

pp. 756– 767, May 2002. 

[3] E. Dijkstra, A note two problems in connection with graphs, Numerical Math., vol. 1, pp. 269–271, 1959. 

[4] X. Xiao and L. Ni, Reducing routing table computationcost in OSPF, in Proc. Internet Workshop, IWS’99, pp. 119–125, 1999. 

[5] M. Noto and H. Sato, A method for the shortest path search by extended Dijkstra algorithm, 2000 IEEE international Conference on Systems, 

Man, and Cybernetics, vol. 3, pp. 2316–2320, 2000. 

[6] V. King, Fully dynamic algorithms for maintaining all-pairs shortest paths and transitive closure in digraphs, in IEEE Symposium on 

Foundations of Computer Science, pp. 81–91, 1999. 

[7] E. Nardelli, G. Proietti, and P. Widmayer, Swapping a failing edge of a single source shortest paths tree is good and fast, Algorithmica, vol. 35, 

pp. 56–74,2003. 

[8] D. Frigioni, A. Marchetti-Spaccamela, and U. Nanni, Fully dynamic shortest paths in digraphs with arbitrary arc weights, Tech. Rep. 

ALCOMFT-TR-01-31 of the EC-IST Project ALCOM-FT, March 2001. 

[9] D. Frigioni, A. Marchetti-Spaccamela, and U. Nanni, Fully dynamic output bounded single source shortest path problem, in Proc. 7th Annu. 

ACM-SIAM Symp. Discrete Algorithms, (Atlanta, GA), pp. 212– 221, 1998. 

[10] P. Narvaez, K.-Y. Siu, and H.-Y. Tzeng, New dynamic algorithms for shortest path tree computation, IEEE/ACM Trans. Networking, vol. 8, 

pp. 734–746, Dec. 2000. 

[11] T. H. Cho, J. W. Kim, B. J. Kim, W. O. Yoon and S. B. Choi, ―A Study on Shortest Path Decision Algorithm for Improving the 

Reliability of Dynamic Routing Algorithm‖, Journal of the Korean Institute of Information Scientists and Engineers, vol. 38, 

(2011), pp. 450-459. 

[12] V. Eramo, M. Listanti and A. Cianfrani, ―Design and Evaluation of a New Multi-Path Incremental Routing Algorithm on 

Software Routers‖, IEEE Transactions on Network and Service Management, vol. 5, (2008), pp.188-203. 

[13] S. K. Lee, J. W. Jang, S. J. Jang and J. Y. Shin, ―Development and Performance Analysis of ABR-DBA Algorithm for Improve 

Network Performance‖, International Journal of Future Generation Communication and Networking, vol. 1, (2008), pp. 1-6 

 

 

 

 

 

 

http://www.ijergs.org/

