
International Journal of Engineering Research and General Science Volume 3, Issue 3, May-June, 2015
ISSN 2091-2730

1284 www.ijergs.org

AN INTERACTIVE QUERY FORM INTERFACE FOR DATABASE

EXPLORATON

Mr. Avinash Sanganna
1
, Dr. Mohammed Abdul Waheed

2

1PG Scholar, CSE Department, Visvesvaraya Technological University,

Postgraduate Centre and Regional Office Kalaburagi 585105, Karnataka, India

avinash.jk@gmail.com

2Associate Professor, CSE Department, Visvesvaraya Technological University,

Postgraduate Centre and Regional Office Kalaburagi 585105, Karnataka, India

dr.mawaheed@gmail.com

ABSTRACT- Modern scientific databases and web databases maintain large and heterogeneous data. The static query forms are not

able to satisfy various ad-hoc queries on those types of databases. Through customize forms user can modify but he must be familiar

with the database schema. Hence it proposes an interactive query form which is able to generate query forms at runtime. The

generation of a query form is an iterative process until the user is satisfied. At each iteration, the system generates clusters to represent

results and the user can choose the cluster then the attributes will be choose by the system and it will calculate F-measure of those

attributes and update the query form by adding those components. It utilizes the expected F-Measure for measuring the goodness of a

query form.

Keywords -- Data Clustering, F-Measure, Query Form, Query Form Generation, Query Form Enrichment, User Interaction.

1. INTRODUCTION

A database is only as useful as its query interface allows it to be. If a user is unable to convey to the database what he or she wants

from it, even the richest data store provides little or no value. Writing well-structured queries, in languages such as SQL and XQuery,

can be challenging due to a number of reasons, including the user’s lack of familiarity with the query language and the user’s

ignorance of the underlying schema. A form is a simple and intuitive query interface frequently used to provide easy database access.

It requires no knowledge, on the part of the user, of how the data is organized in storage and no expertise in query languages. For these

reasons, forms are a popular choice for most of today’s databases. Creating a forms-based interface for an existing database requires

careful analysis of its data content and user requirements. Many existing database management and development tools, such as Easy

Query [2], Cold Fusion [1], SAP and Microsoft Access, provide several mechanisms to let users create customized queries on

databases. However, the creation of customized queries totally depends on users’ manual editing [3]. If a user is not familiar with the

database schema in advance, those hundreds or thousands of data attributes would confuse him/her.

1.1 Motivation

The effectiveness of a manually designed forms-based interface largely depends on the developer’s understanding and estimation of

its user’s needs. This is evident from observable differences between two or more interfaces designed to serve the same purpose but by

different UI designers.For example, consider the task of buying a used car. There are several database-backed websites that help users

buy used vehicles and several of them provide forms based interfaces to help a user find exactly the type of car he or she is looking

for. Specifically, the set of queries that they allow users to ask about the desired car are not the same. This can make some more

desirable for a specific information need even if the data is the same in all of them. We analyzed the interfaces provided by five such

http://www.ijergs.org/
mailto:avinash.jk@gmail.com
mailto:dr.mawaheed@gmail.com

International Journal of Engineering Research and General Science Volume 3, Issue 3, May-June, 2015
ISSN 2091-2730

1285 www.ijergs.org

websites: Car.com, Cars.com, AutoTrader.com, Cars Direct and eBay Motors. While all of these websites serve the same purpose

(helping a user find and buy a used car) and have the same underlying data (used car listings) with more or less the same set of

attributes for each listing, the ways in which their query forms are structured and presented to users are quite different. Our goal in this

paper is to generation of interactive forms-based interface while keeping the interface simple.

2. RELATED WORK

A lot of research works focus on database interfaces which assist users to query the relational database without SQL. QBE (Query-By-

Example) [6] and Query Form are two most widely used database querying interfaces. Current studies and works mainly focus on how

to generate the query forms.

Modified Query Form: The tools provided by the database clients make great efforts to help developers generate the query forms,

such as Easy Query [2], Cold Fusion [1] and so on. They provide visual interfaces for developers to create or customize query forms.

The problem of those tools is that, they are provided for the professional developers [3].H.V. Jagadish proposed a system which

allows end-users to customize the existing query form at run time [7]. If the database schema is very large, it is difficult for end user to

find appropriate database entities and attributes.

Automated creation of forms: M. Jayapandian presented a data-driven method [3]. It first finds a set of data attributes, which are

most likely queried based on the database schema and data instances. Then, the query forms are generated based on the selected

attributes.

Automating the design and construction of query forms: H.V. Jagadish presented a workload-driven method [8].It applies

clustering algorithm on historical queries to find the representative queries. The query forms are then generated based on those

representative queries. One problem of the aforementioned approaches [3],[8] is that, if we generate lots of query forms in advance,

there are still user queries that cannot be satisfied by any one of query forms. Another problem is that, when we generate a large

number of query forms, how to let users find an appropriate query form would be challenging.

Combining keyword search and forms: A solution for aforementioned approaches [3], [8] is proposed in [9].It automatically

generates a lot of query forms in advance. The user inputs several keywords to find relevant query forms from a large number of pre-

generated query forms but it is not appropriate when the user does not have concrete keywords to describe the queries.

3. METHODOLOGY

3.1 Architectural Overview

For a declarative query, to design a form, we must first analyze it and identify its constraints and the required results. Then we use

information gathered from this analysis, as well as from the schema of the database, to create the necessary set of form-elements.

Finally, we arrange these elements in groups, label them suitably, and lay them out in a meaningful way on the form. Thus our

challenge is to design a good set of forms without having an actual query log at hand.

In most cases the schema complexity is simply due to the richness of the data. This complexity is reflected in the queries to the

database, many with more than one entity of interest. In this paper, we propose an Interactive Query Form [IQF] system, is a query

interface which is capable of dynamically generating query forms for users. Different from traditional document retrieval, users in

http://www.ijergs.org/

International Journal of Engineering Research and General Science Volume 3, Issue 3, May-June, 2015
ISSN 2091-2730

1286 www.ijergs.org

database retrieval are often willing to perform many rounds of actions (i.e., refining query conditions) before identifying the final

candidates [4].

Figure1. Flowchart of interactive query form.

Fig. 1 shows the work-flow of IQF. It starts with a basic query form which contains very few primary attributes of the database. The

basic query form is then enriched iteratively via the interactions between the user and our system until the user is satisfied with the

query results. The general data clustering and F-Measure plays a vital role in this paper.

We can break the forms interface design problem down into two challenges discussed below.

 The first challenge to address is determining the schema fragment(s) most likely to be of interest to a querying user. Schemas

can be extremely complex in real-world databases, but actual queries issued to a database typically focus on a small subset of

its schema.

 The second challenge in automated form design is to partition the filtered collection of schema elements into groups such that

the entities, attributes and relationships present in a single group can meaningfully interrelate on a form to express user

queries.

The iteration consists of two types of user interactions: Query Form Enrichment and Query Execution (see TABLE 1).

basic

query

form

basic query

form

Execute

query

Execute

query

No

Yes

Fill query

form

Display

queryresult

Is

satisfied?
Select

interest

form

components

Enrich

query form

Output

http://www.ijergs.org/

International Journal of Engineering Research and General Science Volume 3, Issue 3, May-June, 2015
ISSN 2091-2730

1287 www.ijergs.org

Table 1: Interactions between user and interactive query form.

3.2 Contribution

Our contributions can be summarized as follows:

 We propose an interactive query form system which generates the query forms according to the user’s desire at run time.

 We apply F-measure which is a typical metric to estimate the goodness of a query form [5]. The goodness of a query form is

determined by the query results generated from the query form.

3.3 Query Forms

In this section we formally define the query form. Each query form corresponds to an SQL query template.

Definition 1: A query form F is defined as a tuple(, , ⋈()), which represents a database query template as follows:

 F = (SELECT , , ...,

 FROM ⋈() WHERE),

Where = { , ..., are k attributes for projection, k >0. ={ , , ..., } is the set of n relations (or entities) involved in

this query, n >0.Each attribute in belongs to one relation in . is a conjunction of expressions for relations, ⋈() is a join

function to generate a conjunction of expressions for joining relations of .

3.4 Query Result

Many database queries output a huge amount of data instances. In order to avoid this we only output a compressed result table to show

a high-level view of the query results first. Each instance in the compressed table represents a cluster of actual data instances. Fig. 2

shows the flow of user actions.

Query Form
1) IQF recommends a ranked list of

Enrichment

 query form components to the user.

 2) The user selects the desired form

 components into the current query

 form.

Query

1) The user fills out the current query

Execution

 form and submit a query.

 2) IQF executes the query and shows

 the results.

 3) The user provides the feedback

 about the query results.

http://www.ijergs.org/

International Journal of Engineering Research and General Science Volume 3, Issue 3, May-June, 2015
ISSN 2091-2730

1288 www.ijergs.org

 User feedback

 Fill Click

Figure 2. User Actions.

Another important usage of the compressed view is to collect the user feedback. In real world, end-users are reluctant to provide

explicit feedback. The click-through on the compressed view table is an implicit feedback to tell our system which cluster (or subset)

of data instances is desired by the user.

3.5 Ranking Metric

Query forms are designed to return the user’s de-sired result. There are two traditional measures to evaluate the quality of the query

results: precision and recall [5]. Expected precision is the expected proportion of the query results which are interested by the current

user. Expected recall is the expected proportion of user interested data instances which are returned by the current query form. The

user interest is estimated based on the user’s click-through on query results.

3.6 Estimation of F-Measure

Interactive query form provides a two-level ranked list for the components. The first level is the ranked list of entities. The second

level is the ranked list of attributes in the same entity.

The ranking score estimation is achieved by using F-Measure. Given a set of projection attributes A and an universe of selection

expressions σ, the expected F-Measure of a query form F =(AF, RF, σF,⋈(RF)) is FScoreE(F), i.e.,

FScoreE(Fi)

 = (1 + β
2
). PrecisionE(Fi) . RecallE(Fi)

 β
2
.PrecisionE(Fi) + RecallE(Fi) (1)

Notations:TABLE 2 lists the symbols used in this paper. Let F be a query form with selection condition σF and projection attribute set

AF. Let D be the collection of instances in ⋈ (RF). N is the number of data instances in D. Let d be an instance in D with a set of

attributes A = fA1, A2, ..., Ang, where n = jAj. We use dAF to denote the projection of instance d on attribute set AF and we call it a

projected instance. P (d) is the occurrence probability of d in D. P (σF jd) is the probability of d satisfies σF.P (σFjd)€ {0, 1}.

Table 2: Symbols and Notations.

F query form

RF set of relations involved in F

A set of all attributes in ⋈ (RF)

Ar(F) set of relevant attributes of query form F

Query

form

Compressed

query result

Detailed

query result

http://www.ijergs.org/

International Journal of Engineering Research and General Science Volume 3, Issue 3, May-June, 2015
ISSN 2091-2730

1289 www.ijergs.org

σF set of selection expressions of query form F

d data instance in ⋈ (RF)

D the collection of data instances in ⋈ (RF)

N number of data instances in D

Q database query

DQ results of Q

α fraction of instances desired by users

Algorithm 2: QueryConstruction

Data:Q={Q1, Q2, ...,}is the set of previousqueries executed on Fi.

Result:Qoneis the query ofOne-Query

Begin

 σone ←0

 forQ € Q do

 σone ← σoneⱱ
_
 σ

Aone ←AFi U Ar(Fi)

 Qone ←GenerateQuery(Aone,σone)

Algorithm 2 describes the algorithm of the One-Query’s query construction.

The function Generate Query is to generate the database query based on the given set of projection attributes with selection

expression .When the system receives the result of the query from the database engine, it calls the second algorithm of One-

Query to find the best query condition. The query results will be clustered using general data clustering algorithm i.e., k-Medoid have

been used in this paper. The clusters will be compacted by using the abstract clustering algorithm. Then user will choose clusters

based on that f-measure will be calculated and the result will be displayed for the user.

Algorithm 3: FindBestLessEqCondition

Data:α is the fraction of instances desired by user,DQoneis the query result of Qone, Asis theselection attribute.

Result:s*is the best query condition ofAs.

http://www.ijergs.org/

International Journal of Engineering Research and General Science Volume 3, Issue 3, May-June, 2015
ISSN 2091-2730

1290 www.ijergs.org

 begin

// sort by As into an ordered set Dsorted

Dsorted ←Sort(DQone , As)

s ←∅, fscore⃰←0

n ←0, d ← αβ
2

for i←1 to |Dsorted| do

d ←Dsorted[i]

s ←“As ≤ dAs”

// compute fscore of “As ≤ dAs ”

n ←n + Pu(dAFi)P (dAFi)P (σFi |d)P (s|d)

d ← d + P (dAFi)P (σFi |d)P (s|d)

fscore ←(1 + β
2
) · n/d

if fscore≥fscore then

s⃰← s

fscore⃰← fscore

3.7 PERFORMANCE EVALUATION

3.7.1 Experimental Setup

We implemented interactive query forms as a web-based system using Java Development Kit [JDK] 1.6 with Java Server Page. The

runtime web interface for the query forms using open-source JavaScript library jQuery 1.4. We are using MySQL as the database

engine. These experiments are planning to run using a machine with Intel Core 3 CPU @2.83GHz, 1GB main memory, and running

on Windows XP SP2.

Data Sets: Database: Educational database.

The below fig.3(a) shows the F-Measure graph which is used to calculate the goodness of the query form. Ranking score is a

supervised method to measure the accuracy of the recommendation. The fig.3(b) shows the Average Ranking Score of the Interactive

Query Form. The run-time cost of ranking projection and selection components for IQF depends on the current form components and

the query result size.

http://www.ijergs.org/

International Journal of Engineering Research and General Science Volume 3, Issue 3, May-June, 2015
ISSN 2091-2730

1291 www.ijergs.org

Figure 3. (a) Average F-Measure. (b) Average Ranking Score.

4. CONCLUSION

Query interfaces play a vital role in determining the usefulness of a database. A form-based interface is widely regarded as the most

user-friendly querying method. In this paper, we have developed mechanisms to overcome the challenges that limit the usefulness of

forms, namely their restrictive nature. In this paper we propose an interactive query form generation approach which helps users to

dynamically generate query forms.

As future work, we will study how our approach can be extended to non-relational data. As for the future work, we plan to develop

multiple methods to capture the user’s interest for the queries besides the click feedback. For instance, we can add a text-box for users

to input some keywords queries.

REFERENCES:

[1] Cold Fusion. http://www.adobe.com/products/coldfusion/.

[2] EasyQuery. http://devtools.korzh.com/eq/dotnet/.

[3] M. Jayapandian and H. V. Jagadish. Automated creation of a forms-based database query interface. In Proceedings of the VLDB

Endowment, pages 695–709, August 2008.

[4] S. Agrawal, S. Chaudhuri, G. Das, and A. Gionis. Automated ranking of database query results. In CIDR, 2003.

[5] G. Salton and M. McGill. Introduction to Modern Information Retrieval. McGraw-Hill, 1984.

[6] M. M. Zloof. Query-by-example: the invocation and definition of tables and forms. In Proceedings of VLDB, pages 1–14,

Framingham, Massachusetts, USA, September 1975.

[7] M. Jayapandian and H. V. Jagadish. Expressive query specification through form customization. In Proceedings of International

Conference on Extending Database Technology (EDBT), pages 416–427, Nantes, France, March 2008.

[8] M. Jayapandian and H. V. Jagadish. Automating the design and construction of query forms. IEEE TKDE, 21(10):1389– 1402,

2009.

[9] E. Chu, A. Baid, X. Chai, A. Doan, and J. F. Naughton. Combining keyword search and forms for ad hoc querying of databases. In

Proceedings of ACM SIGMOD Conference, pages 349–360, Providence, Rhode Island, USA, June 2009

http://www.ijergs.org/

