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Abstract—In this paper the design of an IP core of Multiprocessor System-on-Chip (MPSoC) in the context of microarchitecture of 

the Scheduling Processor targeted for multicore systems is explored. This scheduling processor schedules the tasks i.e. units of 

computation in parallel for execution on different processors and IP cores. As this model is dealing with Out-of-Order (OoO) 

execution, the data dependencies like Read-after-Write (RAW), Write-after-Read (WAR) and Write-after-Write (WAW) imposes the 

challenging constraints on the direct use of techniques like register renaming and dynamic scheduling at instruction level. The 

scoreboarding algorithm with parameter renaming technique at task level analyzes the data dependencies in order to solve the stalling 

problem occurring in OoO execution. Thus the scheduler schedules different tasks in OoO manner. The model for the same has been 

verified by using resulting timing diagram. The results demonstrate that the model can largely release the burden on programmers as 

well as uncover the task level parallelism (TLP). 
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INTRODUCTION 

Multiprocessor system on chip has been seen in main stream since last few years [1]. Companies like Xilinx and Altera have prime focus 

of research on this emerging area. The development of MPSoC begins from the multi-core central processing unit. It is a platform that 

contains multiple processing elements with specific functionalities which are usually heterogeneous. However, due to its heterogeneous 

instruction set architectures, software tool chains and programming interfaces, it has presented many challenges to efficient designing and 

implementation of rapid prototype for diverse applications.  

The most promising future processor architectures are considered as the combination of reconfigurable computing and multi-core 

technologies [1].  However, there are some critical issues like computational capabilities, scalability, programmability, flexibility, power 

consumption and so on, which are becoming increasingly important. Such raising demands have resulted into the outgrowth of FPGA 

based MPSoC composed of a variety of heterogeneous computational units. Whereas, OoO execution is a paradigm used in most high-

performance microprocessors to make use of instruction cycles that would otherwise be wasted by delay. In this paradigm, a processor 

executes instructions in out-of-order as soon as the input data is available, instead of their original order in a program. As it allows 

execution with less waiting time, the performance definitely improves. Also the process technology has improved and per units more 

transistors can be fitted in the same die area, hence adding new features to the system becomes effectively easy. Thus dynamic scheduling 

can easily be implemented to build cost effective system. 

In basic pipelining the system uses in-order instruction issue technique due to which if an instruction stalls rest all instructions are 

stalled. In contrast to this, the OoO execution has capability to schedule the ready instructions independently. Therefore to solve the 

stalling problem OoO execution technique is used for multi-cycle task execution, as this study focuses on multi-cycle task execution. 

Dynamic scheduling is a useful scheduling technique for multi-cycle instructions systems. Scoreboarding and Tomasulo are two such 

effective methods for dynamic scheduling, out of which this study implements scoreboarding algorithm for OoO parallel execution of 

task scheduling. Thus an IP core of task scheduler intending to solve the data dependencies during OoO execution using dynamic 

scheduling is developed in MPSoC environment.  

RELATED STUDY  

Rigorous research is being done on MPSoC regarding the critical issues like computational capabilities, programmability, flexibility, 

scalability and power consumption.  By using parallel programming paradigm the computational capabilities can be achieved. Such 

parallel task execution models have been studied for parallel computing machines during the past decades. Initially, many task based 

parallel programming models were popular like Cilk [2] to enhance ILP to TLP. Mostly it was focused on symmetric multiprocessor 

but it was unable to support fully automatic parallelization. So the programmers have to handle the task scheduling and mapping 
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schemes manually. Some of them focused on the utilization of reconfigurable FPGA platform and integration of acceleration engines, 

such as Chimaera [3], Platune [4] and MOLEN [5].   

Also models like Wave Scalar [6] combined both static and dynamic dataflow analysis in order to exploit more parallelism. Later 

on with the tremendous advancements in chip integration, to solve the programming wall problem, MPSoC programming models such 

as StarSs [7] [8], Oscar [9] and CellSs [10] are taken into consideration. These models implicitly schedule work and data, thereby 

saving the efforts of programmer by explicitly managing parallelism. These models share conceptual similarities with the out-of-order 

superscalar pipelines, such as dataflow scheduling and dynamic data dependency analysis. The traditional algorithms, such as 

Scoreboarding and Tomasulo, can dynamically schedule the instructions for OoO execution and explore ILP with multiple arithmetic 

units.  

Task Superscalar pipeline is an abstraction of out-of-order superscalar pipelines which can use processors as function units. It 

dynamically identifies task-level parallelism, detects intertask data dependencies, and executes the tasks out-of-order [11]. An object-

based dataflow execution with data dependencies analysis method achieve even more dataflow-like execution and exploit higher 

degrees of concurrency. Using this model the parallel execution of statically-sequential programs is achieved. In a dataflow fashion, it 

dynamically parallelizes the execution of suitably-written sequential programs on multiple processing cores [12]. OoOJava is a 

compiler-assisted approach that uses developer annotations along with the static analysis to provide an easy-to-use deterministic 

parallel programming model. This method is based on task annotations that instruct the compiler to consider a code block for OoO 

execution [13].  

MP-Tomasulo is a dependency-aware automatic parallel task execution engine for sequential programs. It detects and eliminates 

WAW and WAR inter-task dependencies in the dataflow execution by applying the instruction-level Tomasulo algorithm to the 

MPSoC environment. So this system operates tasks in OoO on heterogeneous units but it has the overhead of scheduling which could 

be reduced [14]. In order to reduce these overheads, Task-scoreboarding was developed. It is a data hazards detection engine for OoO 

task execution. It considers IP cores and processors as function units and treats tasks as abstract instructions. It can analyze intertask 

data dependencies at runtime and issues tasks to heterogeneous function units automatically with parameter renaming techniques [15].  

PROPOSED DESIGN 

The OoO task scheduler proposed here is intended to provide the high speed execution by solving the stalling problem in OoO 

execution due to data dependency at TLP. The proposed work, execution flow for it and the algorithm implementation is discussed in 

this section.   

A. Proposed work 

The distinctive heterogeneous MPSoC hardware consists of multiple processors and a variety of heterogeneous IP cores for 

dedicated applications to extract the task level parallelism. Accountable components of such systems are computing processors, 

hardware IP cores, scheduling processor, interconnect modules, memory and peripherals. This paper is going to focus on the 

scheduling processor part, because handling immense number of tasks is a very critical job. This proposed design is a parallel task 

execution model for the fast execution of such system at TLP. It supports out of order execution along with register renaming 

mechanism by dynamically scheduling the tasks.   

The proposed block diagram for IP core implementation of task scheduler to support OoO execution in an MPSoC environment is 

shown in Fig. 1. The block diagram consists of two computing processors and three IP cores interfaced with the scheduling processor 

which uses scoreboarding algorithm for dynamic scheduling. Scoreboarding can provide a light-weight task hazards detection engine 

for OoO execution, its architecture is simple, which brings smaller scheduling overheads and for TLP, WAW and WAR data 

dependency do not encounter as much as at instruction level [15]. Therefore here scoreboarding algorithm is preferred instead of 

Tomasulo.  

 

 

 

 

  

 

 

 

Fig. 1 Block diagram for IP core design of task scheduler to support OoO execution 

B. Microarchitecture of scheduler processor 

The microarchitecture of scheduler processor is shown in Fig. 2. The scheduler processor fetches the task-instructions from the 

register file which represents invocation of a task. It decodes each task-instruction and then schedules it to the computing processors 

Scheduler 

Processor 

Scoreboarding 

Algorithm 

Interface 1 

Interface 2 

Interface 3 

Interface 4 

Interface 5 

Computing 

Processor 1 

Computing 

Processor 2 

IP 

Core 1 

IP 

Core 2 

IP 

Core 3 

http://www.ijergs.org/


International Journal of Engineering Research and General Science Volume 3, Issue 3, Part-2 , May-June, 2015                                                                                   
ISSN 2091-2730 

437                                                                                                   www.ijergs.org  

and IP cores where the corresponding task is executed. Each task specifies its outputs and inputs to and from the registers in register 

file. After issuing the task-instruction, register is renamed by using register renaming technique. In this system a merged type rename 

buffer is used. A merged type feature is only a Register File that contains both the renaming (in-process) registers and architectural 

(retired) registers [16]. After renaming, the updated values are dispatched to the OoO execution unit. The task scheduler has its own 

scoreboard memory. The physical register file used here is of load-store type architecture. The tasks are then executed parallelly in the 

computing processors and IP cores. Then the result is written back in the register file and alternatively scoreboard memory gets 

updated. 

 

Fig. 2: Scheduler processor microarchitecture 

C. Execution flow for OoO scheduling 

The task sequence is issued and executed through seven stages: fetch, issue, rename, read operand, task partition, execute and write 

result. From these fetch, issue and rename are in-order stages. Whereas, read operand, task partition and execution stage are out-of-

order stages. At last the result is again writing back in in-order. All these stages are similar to the instruction level pipelining, in 

addition to that register renaming stage is included as stage 3. Each task undergoes through these seven stages as shown in Table 1. 

The seven stages of execution flow are as follows: 

1) Fetch – initially the instruction is fetched from the physical register file. Then it is decoded for further execution. 

2) Issue – after decoding, the scoreboard issues the instruction to the functional unit (FU) and updates its internal data structure if 

a FU for instruction is free and no other active instruction has same destination register. After confirming that no other active 

FU wants to write its result into the destination register, WAW- Hazards are avoided. The instruction issue is stalled in the case 

of a WAW-Hazard or a busy FU. 

3) Rename – this technique is used for dependency decoding. It assigns a unique storage location with each write-reference to a 

register. 

4) Read operand – the scoreboard monitors the availability of the source operands. If no earlier issued active instruction is going 

to write the register, then that source operand is available and as soon as it gets available the instruction can proceed. In this 

way it resolves all RAW-Hazards dynamically and allows instructions to execute out of order. 

5) Task partition – after finishing read operand stage, availability of function unit check is done and then goes for execution. 

6) Execute – the required FU starts the execution of the instruction. As soon as the result is ready, it informs the scoreboard that it 

has completed the execution. If another instruction is waiting on the same result, it can be forwarded to the stalled FU. 

7) Write result – the write back of the instruction is stalled on the existence of a WAR-Hazard until the source operand is read by 

the dependent instruction which is a preceding instruction in the order of issue. 

TABLE 1 PROCESSING FLOW OF SCOREBOARDING 

Task status Wait until Bookkeeping 

Fetch  Fetch the data from register file 
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Issue Not Busy [FU] and 

not Results [D] 

Busy [FU] ←yes;  

Op [FU]←op; 

Fi [FU] ←D; 

Fj [FU] ←S1; Fk [FU] ←S2; 

Qj←Result [S1]; Qk←Result [S2]; 

Rj←not Qj; Rk←not Qk;  

Result [D] ←FU 

Rename Task issued Rename with new register from register file 

Read Operand Rj and Rk Rj ←No; Rk←No; 

Task Partition ! ∀ Busy [FU] Select the FU and replace  table entries 

Execute Function unit done Distribute tasks to function units 

Write Result ∀f((Fj [f]≠Fi [FU] or 

Rj [f] = No) & 

(Fk [f] ≠Fi [FU] or 

Rk [f] =No) 

∀f(if Qj [f]=FU then Rj [f] ←Yes); 

∀f(if Qk [f]=FU then Rk [f] ←Yes); 

Result [Fi [FU]] ←0; Busy [FU] ←No 

 

D. Algorithm implementation 

Scheduling is very useful for the multi-cycle instructions, because when instructions are multi-cycled then only the scheduling will 

work more efficiently; otherwise, single cycle instructions does not need the scheduling. The scoreboard algorithm maintains three 

status tables to control the execution of the instructions: 

 Instruction Status: Indicates the existing status of stages for each instruction being executed. 

 Functional Unit Status: Indicates state of each functional unit. The function unit status is listed in Table 2. Each function unit 

maintains 9 fields in the table: 

1. Busy: Indicates whether the unit is being used or not 

2. Op: Operation to be performed in the unit (e.g. MULT, DIV, LOAD, ADD) 

3. Fi: Destination register 

4. Fj,Fk: Source-register numbers 

5. Qj,Qk: Functional units that will produce the source registers Fj, Fk 

6. Rj,Rk: Flags that indicates when Fj, Fk are ready 

 Register Status: Indicates which function unit will write results into it for each register. 

 

 

 

 

TABLE 2 Function unit status table 

Name Function Unit Status 

Busy Fi Fj Fk Qj Qk Rj Rk 

Load         

http://www.ijergs.org/


International Journal of Engineering Research and General Science Volume 3, Issue 3, Part-2 , May-June, 2015                                                                                   
ISSN 2091-2730 

439                                                                                                   www.ijergs.org  

Multiplier         

AES_ENC         

SPI_slave         

RESULT 

In order to solve the problem of stalling, the task scheduler is designed and developed in this research that supports OoO execution in 

an MPSoC environment. Five processing units are interfaced to the scheduler with two computing processors and three IP cores. The 

IP cores interfaced here are AES encryption, SPI slave and multiplier and computing processors are of RISC architecture. The task 

scheduler is designed in ModelSim software using Verilog language. As technology independent modeling is developed, it can be used 

as an IP core in any system for OoO execution and hazards detection. 

Here four tasks are considered for the algorithm implementation as shown in Table 2. The experimental results are taken under four 

situations: no hazards, RAW, WAW and WAR. Task execution time and task scale, these two parameters are considered for 

performance evaluation. The task execution time denotes the entire execution time for different types of data hazards. Whereas, task 

scale is nothing but the total amount of different tasks or number of loop iterations.  

The task scale is considered up to 1046 for result analysis. From the analysis it is found that this model is able to solve 25 % and 

50 % RAW, WAW and WAR hazards and 100 % WAR hazards as shown in Fig. 3. Also from the RTL level simulation it is found that 

the model is able to solve the WAW and WAR dependencies at task level which has been avoided in case of ILP. 

 
Figure 3: Result analysis for hazard detection 

 

CONCLUSION  

In this paper, a synthesizable IP core of task scheduler is designed in an MPSoC environment. The stalling problem in OoO execution is 

solved using dynamic scheduling scoreboard algorithm for TLP. The algorithm considers the abstract instructions as tasks and; processor and 

IP cores as function units. The model analyzes the inter-task data dependencies at runtime and after solving dependencies, it issues the tasks 

to function units. The experimental result shows that the designed IP core can support the OoO execution with data dependency resolution at 

TLP. It also resolves the WAW and WAR dependencies which are not possible at ILP. This designed IP core can be used in SoCs to support 

OoO execution for task scheduling. The work can be extended with the implementation of algorithm for superscalar processors. 
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