
International Journal of Engineering Research and General Science Volume 3, Issue 3, Part-2 , May-June, 2015
ISSN 2091-2730

447 www.ijergs.org

Measuring Code Quality to Improve Specification Mining

Roshan Deshmukh, Prof.Umesh Kulkarni

 KVCT’s ARMIET, roshan982@gmail.com

Abstract— Every software Industry requires the quality of code. Formal specifications are mathematically based techniques whose

purposes are to help with the implementation of systems and software. They are used to describe a system, to analyze its behavior, and

to aid in its design by verifying key properties of interest through rigorous and effective reasoning tools. These specifications

are formal in the sense that they have syntax, their semantics fall within one domain, and they are able to be used to infer useful

information. Formal specifications can help with program testing, optimization, refactoring. However, they are difficult to write

manually, and automatic mining techniques suffer from 90–99% false positive rates. To address this problem, we propose to augment

a temporal-property miner by incorporating code quality metrics. We measure code quality by extracting additional information from

the software engineering process, and using information from code that is more likely to be correct as well as code that is less likely to

be correct.

Keywords— Specification mining, machine learning, software engineering, code metrics, program understanding

INTRODUCTION

Incorrect and buggy behavior in deployed software costs up to $70 billion each year in the US [7]. Thus debugging, testing,

maintaining, optimizing, refactoring, and documenting software, while time-consuming, remain critically important.

Such maintenance is reported to consume up to 90% of the total cost of software projects .A key maintenance concern is incomplete

documentation up to 60% of maintenance time is spent studying existing software(e.g.,[8]). Human processes and especially tool

support for finding and fixing errors in deployed software often require formal specifications of correct program behavior(e.g.,[9]); it

is difficult to repair a coding error without a clear notion of what ―correct‖ program behavior entails. Unfortunately, while low-level

program annotations are becoming more and more prevalent, comprehensive formal specifications remain rare.

Many large, preexisting software projects are not yet formally specified. Formal program specifications are difficult for humans to

construct .and incorrect specifications are difficult for humans to debug and modify. Accordingly, researchers have developed

techniques to automatically infer specifications from program source code or execution traces [2]. These techniques typically produce

specifications in the form of finite state machines that describe legal sequences of program behaviors.

 Fig.1.Block Diagram

Input code

for the

Quality

Measuring

Quality

Measure

Software

Output

with

Percenta

ge of

Input

Code

http://www.ijergs.org/

International Journal of Engineering Research and General Science Volume 3, Issue 3, Part-2 , May-June, 2015
ISSN 2091-2730

448 www.ijergs.org

LITERATURE SURVEY

API-based and Information Theoretic Metrics for Measuring the Quality of Software Modularization [10]. This system is developed

using Object oriented software system. Create a set design principles for code modularization and produce set of metrics.

Modularization quality is calculated using metrics such as structural, architectural and notions. There are three contributions such as

coupling, cohesion and complexity metrics to modularize the software. This metrics seek to characterize a body of software according

to the enunciated principles. Provide two types of experiments to validate the metrics.

Whaley et al. propose a static miner [1] that produces a single multi-state specification for library code. The JIST[2]

miner refines Whaley et al.’s static approach by using techniques from software model checking to rule out infeasible

paths. Gabel and Su [3] extend Perracotta using BDDs, and show both that two-state mining is NP-complete and some

specifications cannot be created by composing two-state specifications. Lo et al. use learned temporal properties, such

as those mined in this article, to steer the learning of finite state machine behavior models [4].Shoham et al. [5] mine

by using abstract interpretation, where the abstract values are specifications

MINING CHARACTERISTICS

This section shows the underlying concepts of mining techniques and their limitations which encourage the researchers to step into

incorporating code quality metrics. Specification mining techniques produces specifications but still they have high false positive

rates. The Comparison between most of these approaches is provided in the Table 1.

In WN miner [6] the specification mining was motivated by the observations of run-time error handling mistakes. In other approaches

examining such mistakes, the code frequently violates simple API specifications in exceptional situations. Despite the proliferation of

specification-mining research, there is not much report on issues pertaining to the quality of specification miners. This technique is

same as that of Engler et al. but is based on assumptions about run time errors, chooses candidate event pairs differently, presents

significantly fewer candidate specifications and ranks presented candidates differently.

In a normal Table1.A Comparison study execution, events „a’ and „b’ may be separated by other events and difficult to discern as a

pair. After an error has occurred, however, the cleanup code is usually much less cluttered and contains only operations required for

correctness. The candidate specifications are filtered using varied criteria such as exceptional control flow, one error, data path etc.

This highlights the practical importance of the algorithmic assumptions, in particular the use of exceptional control flow. It can serve

as a requirement for acceptance. It can even assist inspections by helping to target effort at parts of a program that may need

improvement. Though this miner select specifications from software artifacts and finds per-program specifications for error detection,

it does not have profound results in bug finding.

Strauss, ECC and WN technique were all good at yielding specifications that found bugs. The WN technique found all bugs reported

by other techniques on these benchmarks and did so with the fewest false positives.

QUALITY METRICS

Code metrics like LOC and Cyclomatic Complexity examines the internal complexity of a procedure whereas this structure metrics

examines the relationship between a section of code and the rest of the system. Process oriented metrics are used through the different

phases of the software life cycle. Measurement on quality should concentrate on the early phases in the life cycle to improve the

quality of software and decrease of development and maintenance costs. Defects must be tracked to the release origin which is the

portion of the code that contains the defects and at what release the portion was added, changed, or enhanced.

When calculating the defect rate of the entire product, all defects are used; when calculating the defect rate for the new and changed

code, only defects of the release origin of the new and changed code are included. On the one hand, the process quality metrics simply

means tracking defect arrival during formal machine testing for some organizations. On the other hand, some software organizations

with well-established software metrics programs cover various parameters in each phase of the development cycle.

http://www.ijergs.org/

International Journal of Engineering Research and General Science Volume 3, Issue 3, Part-2 , May-June, 2015
ISSN 2091-2730

449 www.ijergs.org

ACKNOWLEDGMENT

I would like to express my sincere gratitude towards my guide Prof.Umesh Kulkarni for the help, guidance an encouragement in the

development of this methodology. They supported me with scientific guidance, advice and encouragement, and were always helpful

and enthusiastic and this inspired me in my work. I have benefitted from numerous discussions with guide and other colleagues.

CONCLUSION

Formal specifications have a variety of applications including testing, maintenance, optimization, refactoring, documentation, and

program repair. However, such specifications are difficult for human programmers to produce and verify manually, and existing

Miners Characteristics Comment

Engler et al. Use two state
temporal
properties.

High false
positive rates

Whaley et al. Produces Single
multi state
specification

Human
intervention

Strauss focuses on
machine
learning to
learn a Single
specification
from traces

Use of single
specification
is not
sufficient

JIST Refines Whaley
et al. technique
to mainly
disregard
infeasible paths

Handles only
simple subset
of Java

WN miner Selecting
specifications
from software
artifacts

Does not
have
profound
results in
finding bugs

Claire Use
measurements
of
trustworthiness
of source code
to mine
specifications

Does not give
adequate
results over
precision.

http://www.ijergs.org/

International Journal of Engineering Research and General Science Volume 3, Issue 3, Part-2 , May-June, 2015
ISSN 2091-2730

450 www.ijergs.org

automatic specification miners that discover two-state temporal properties have prohibitively high false positive rates. The goal of this

survey is to support the study on the legacy of generating specifications to the new automatic techniques. It helps to get an insight into

this dynamic field of study in Specification Mining. Since the object orientation is emerging in all kinds of applications, it is also

welcome in the specification mining process. It is mentioned to be dynamic, as these approaches are under development and it steps

higher everyday to achieve efficiency in capturing specifications.

REFERENCES:

[1]J. Whaley, M. C. Martin, and M. S. Lam, ―Automatic extraction of object-oriented component interfaces,‖ in ISSTA, 2002.

[2]R.Alur, P.Cerny, P.Madhusudan, and W. Nam, ―Synthesis of interface specifications for Java classes,‖ in POPL, 2005.

[3]M. Gabel and Z. Su, ―Symbolic mining of temporal specifications, ―in ICSE, 2008, pp. 51–60.

[4]D. Lo, L. Mariani, and M. Pezz`e, ―Automatic Steering of Behavioral Model Inference,‖ in FSE. ACM, 2009, pp. 345–354.

[5]S. Shoham, E. Yahav, S. Fink, and M. Pistoia, ―Static specification mining using automata-based abstractions,‖ in International

Symposium on Software Testing and Analysis, 2007, pp. 174–184.

[6]W. Weimer and G.C. Necula, ―Mining Temporal Specifications for Error Detection,‖ Proc. Int’l Conf. Tools and Algorithms for

the Construction and Analysis of Systems, pp. 461-476, 2005.

[7]National Institute of Standards and Technology, ―The economic impacts of inadequate infrastructure for software testing,‖ Tech.

Rep. 02-3, May 2002.

[8]S. L. Pfleeger, Software Engineering: Theory and Practice. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2001.

[9]D. Malayeri and J. Aldrich, ―Practical exception specifications.‖In Advanced Topics in Exception Handling Techniques, 2006, pp.

200–220.

[10]Sarkar, S.; Kak, A.C.; Rama, G.M. "Metrics for Measuring the Quality of Modularization of Large-Scale Object-Oriented

Software", Software Engineering, IEEE Transactions on, on page(s): 700 - 720 Volume: 34, Issue: 5, Sept.-Oct. 2008

http://www.ijergs.org/

