
International Journal of Engineering Research and General Science Volume 3, Issue 5, September-October, 2015
ISSN 2091-2730

924 www.ijergs.org

Criticality Factor of Modules with the Application of Modified Neighborhood

Integration Testing and Initiating Build Testing

Dr. Namita Gupta
1
, Nitesh Goyal

2

1 Head of Department, Computer Science Engineering, Maharaja Agrasen Institute of Technology, Rohini, Delhi - 110086, India

2 Student, Computer Science Engineering, Maharaja Agrasen Institute of Technology, Rohini, Delhi - 110086, India

(me.niteshgoyal@gmail.com, +919310345131, +919599944144)

Abstract— Software testing is the process used to measure the quality of developed computer software. It is done to find all the

bugs, flaws, broken paths, stray components etc. in a given program or software. The initial step of doing software testing includes

testing the most critical module of all, so that main body of software is tested first. In this paper the technique of finding the most

critical module of all depending on functional dependency is being discussed with the initiation of build testing.

Keywords— Software Testing, Software Module, Module Criticality, Structural Testing, Integration Testing, Build Testing and Call

Graph.

INTRODUCTION
Software testing is an art of finding flaws, bugs and causes of errors in a given software.

The software testing is must as most of the machines work on a computer algorithm and if any bug or flaw occurs in this algorithm the

results may be catastrophic. Testing enhances the quality of a given software. Before initiating testing process, several test cases or

constraints are defined on the given software, on the basis of which best testing technique is chosen. Without declaring these

constraints the tester cannot decide what kind of testing is being needed in a specific software.

The test cases must include the following information:

The Input Information: a) Preconditions, it includes the information of circumstances hold prior to test case execution.

 b) The actual inputs identified by some Testing Method.

The Output Information: a) Postconditions, it includes information of circumstances that need to be satisfied after the

execution, like, number of outputs should be finite.

 b) Actual outputs identified by some Testing Method.

Different testing techniques are available to generate the test cases based on software code complexity to be tested. Two fundamental

approaches used to determine the test cases are – Functional Testing and Structural Testing.

Functional Testing consider software as function which will give an output for some given input or as a software which is generating a

set of outputs (range) for set of inputs (domain). In this approach, the code of software is considered as Black Box which is generating

a set of outputs for the entered input. If the output is not as per the requirements (constraints on software) than it is considered to

contain bug(s), which needs to be rectified.

Structural Testing considers the structure/ internal logic of the software to find the bugs. That is why it is also termed as White Box

Testing. The approach helps to detect defects like linking bugs, missing statements, unused code fragments and many more.

Process of testing starts in parallel to first phase of Software development life cycle (SDLC). Test cases are generated considering the

user’s requirements collected during requirement gathering phase of SDLC. This is called static testing. Similarly, different testing

techniques are available to test the activities performed at design phase. Various black-box and white-box testing techniques are used

to test each and every module implemented during the coding phase of SDLC. Then Integration testing is performed to test the

interface between the individual modules. Call Graph based Neighbourhood Integration Testing is one of the integration testing

technique used to detect the interface errors between the modules. In this technique, call graph showing all the modules of software is

drawn.

Call Graph is basically a directed graph, which represents the links between modules, that is, it represents the directed link(s) between

software modules telling the tester that which module(s) is/are being called by a particular module. The internal structure of the

software is clearly represented by a call graph.

http://www.ijergs.org/
mailto:me.niteshgoyal@gmail.com

International Journal of Engineering Research and General Science Volume 3, Issue 5, September-October, 2015
ISSN 2091-2730

925 www.ijergs.org

For example, here the modules are represented as nodes (numbered from 1 to 11) and the arrows represent the links between the

different software modules as per the module calls made by them. The obtained structure forms a call graph.

Fig. 1
The call graph of a BANK system.

Neighbourhood Integration Testing considers the neighbour modules of each and every software module represented as nodes in call

graph. Topmost module in call graph with zero indegree is termed as root node, all modules having outdegree zero are termed leaf

nodes, and the modules being called are termed as Successors, and modules calling some other modules are termed Predecessors.

The biggest advantage of using this technique is that it reduces the number of test cases thus saving testing time.

But, the technique also has some disadvantages mention below:

1. If a node (module) that has been repeated most of the numbers of times and it is found that it has some error in that

case the whole process need to be repeated again from the very starting for all the neighbourhoods related to that

faulty node (module).

2. The modules are being checked only from its outer cover, but a lot depends on the internal threads also of those

individual modules.

To overcome the above two disadvantages of call graph based neighbourhood integration testing, in this paper a new integration

testing technique called ―Friend Integration testing‖ is proposed. This new technique identifies the friends or (neighbours) of each

node of call graph, including the root and the leave nodes and then identifies the most critical nodes to be tested based on the

criticality which is discussed in next section.

PROPOSED FRIEND INTEGRATION TESTING TECHNIQUE

Software containing multiple integrated modules interface with each other and exchange necessary information among themselves to

accomplish the required functionality as documented in user’s specification document.

Due to time constraint, testing each and every module is not possible. Hence build testing is used to test the modules in different

builds, each build containing modules of same criticality. Criticality of a module is determined based on its interaction with other

modules of the same software. Module with highest indegree and outdegree is the most critical node as any defect in that module has

direct impact on its calling and called modules.

Proposed Friend technique determines the criticality of each module using the formula given below:

http://www.ijergs.org/

International Journal of Engineering Research and General Science Volume 3, Issue 5, September-October, 2015
ISSN 2091-2730

926 www.ijergs.org

Module (Predecessors) = Number of modules calling the i

th
 module

Module (Successors) = Number of modules being called by i
th

 module

Graph (Successors) = ΣModule (Successors), where indegree ≠0

Builds are created based on the following observations:

1. If Criticality Factor (C) of two modules M1 and M2 shows same value, then

 If Module M1 (Predecessor) > Module M2 (Predecessor) then

 Module M1 is considered more critical than module M2.

Reason - Higher the number of predecessors more the module is being called by other modules. Thus higher the Criticality

Factor.

2. If M1(Successors) == M2(Successors) and

M1 (Predecessor) == Module M2 (Predecessor) then

 Compute the path length from root node to M1 and M2 using Breath First Search (BFS) method.

Module with smaller path length is considered more critical.

Reason –main() module is the most critical module of any software and Module near to Main module affects it more as

compared to module far from Main module.

3. Modules showing same value of Criticality Factor () are kept in same build.

4. Module(s) are tested in decreasing order of their criticality factor values.

CASE STUDIES

CASE STUDY 1

Taking in account the example of BANK System.

The BANK System represents the minimal features that a bank constitutes. A user can see the bank branch, set up a new account,

account number will be generated automatically on which user sets a password, and the deposit or withdrawal of money can be done

with user login only. The balance of the account can be seen, every time, after any action on the user account take place.

Modules are:

MODULE

NUMBERS

 MODULES

1 main() //Main function

2 branch() //Tell branch of bank

3 get_password() //Password of specific account.

http://www.ijergs.org/

International Journal of Engineering Research and General Science Volume 3, Issue 5, September-October, 2015
ISSN 2091-2730

927 www.ijergs.org

4 check_password () //Password verification.

5 withdraw() //Withdraw money from bank

6 deposit() //Deposit money in bank

7 new_account () //Creating new account.

8 balance() //Display balance of the account

9 generate_ac_no () //Generating account number for new account.

10 set_password() //Creating new password

11 ac_no() //Taking account number of existing account.

Table 1

Layout of BANK system.

(The call graph for BANK System is given in Fig 1)

TABLE 2

Friends of nodes in Bank System

Criticality Factor of modules using the formula —

Module (Predecessors) = Number of modules calling the i
th

 module

Module (Successors) = Number of modules being called by i
th

 module

Graph (Successors) = ΣModule (Successors), where indegree ≠0

 Using Table 2 Graph (Successors) = 18.

1. For Module 1(From Table 2)

Module (Successors) = 5 ≡ (2, 5, 6, 7, 8 are the Module Successors)

The Criticality Factor for Module 1 using the above formula is calculated as follows:

MODULE

NUMBERS

MODULE

PREDECESSORS

MODULE

SUCCESSORS

1 - 2, 5, 6, 7, 8

2 1 -

3 11 4

4 3 5, 6, 8

5 1, 4 8, 11

6 1, 10 8, 11

7 1 9

8 1, 4, 5, 6 11

9 7 10

10 9 6

11 5, 6, 8 3

http://www.ijergs.org/

International Journal of Engineering Research and General Science Volume 3, Issue 5, September-October, 2015
ISSN 2091-2730

928 www.ijergs.org

C1 =

 = 0.28

2. For Module 2(From Table 2)

Module (Successors) = 0 ≡ (No Module Successors)

The Criticality Factor for Module 2 using the above formula is calculated as follows:

C2 =

 = 0

3. For Module 3(From Table 2)

Module (Successors) = 1 ≡ (4 is the Module Successor)

The Criticality Factor for Module 3 using the above formula is calculated as follows:

C3 =

 = 0.056

4. For Module 4(From Table 2)

Module (Successors) = 3 ≡ (5, 6, 8 are the Module Successors)

The Criticality Factor for Module 4 using the above formula is calculated as follows:

C4 =

 = 0.167

5. For Module 5(From Table 2)

Module (Successors) = 2 ≡ (8, 11 are the Module Successors)

The Criticality Factor for Module 5 using the above formula is calculated as follows:

C5 =

 = 0.111

6. For Module 6(From Table 2)

Module (Successors) = 2 ≡ (8, 11 are the Module Successors)

The Criticality Factor for Module 6 using the above formula is calculated as follows:

C6 =

 = 0.111

7. For Module 7(From Table 2)

Module (Successors) = 1 ≡ (9 is the Module Successor)

The Criticality Factor for Module 7 using the above formula is calculated as follows:

C7 =

 = 0.056

8. For Module 8(From Table 2)

Module (Successors) = 1 ≡ (11 is the Module Successor)

The Criticality Factor for Module 8 using the above formula is calculated as follows:

C8 =

 = 0.056

9. For Module 9(From Table 2)

Module (Successors) = 1 ≡ (10 is the Module Successor)

http://www.ijergs.org/

International Journal of Engineering Research and General Science Volume 3, Issue 5, September-October, 2015
ISSN 2091-2730

929 www.ijergs.org

The Criticality Factor for Module 9 using the above formula is calculated as follows:

C9 =

 = 0.056

10. For Module 10(From Table 2)

Module (Successors) = 1 ≡ (6 is the Module Successor)

The Criticality Factor for Module 10 using the above formula is calculated as follows:

C10 =

 = 0.056

11. For Module 11(From Table 2)

Module (Successors) = 1 ≡ (3 is the Module Successor)

The Criticality Factor for Module 11 using the above formula is calculated as follows:

C11 =

 = 0.056

The table of Criticality Factor of Modules for BANK System is:

MODULE NUMBERS CRITICALITY FACTOR

1 0.28

2 0

3 0.056

4 0.167

5 0.111

6 0.111

7 0.056

8 0.056

9 0.056

10 0.056

11 0.056

Table 3

Criticality factor of modules of BANK system using Formula 1

Step 1:

If Criticality Factor (C) of two modules M1 and M2 shows same value, then

 If Module M1 (Predecessor) > Module M2 (Predecessor) then

 Module M1 is considered more critical than module M2.

The modules (5, 6) and (3, 7, 8, 9, 10, 11) have the same Criticality Factor, based on given rule the criticality of modules is:

N5 = N6

N8 > N11 > (N3 =N7 = N9 = N10)

Step 2:

If M1 (Successors) == M2 (Successors) and

M1 (Predecessor) == Module M2 (Predecessor) then

 Compute the path length from root node to M1 and M2 using Breath First Search (BFS) method.

Module with smaller path length is considered more critical.

There is ambiguity in modules (5, 6) and (3, 7, 9, 10), following above rule:

http://www.ijergs.org/

International Journal of Engineering Research and General Science Volume 3, Issue 5, September-October, 2015
ISSN 2091-2730

930 www.ijergs.org

By applying BFS the results is:

Path for N5 = N1 -> N5

Path for N6 = N1 -> N6

Path for N3 = N1 -> N8 -> N11 ->N3

Path for N7 = N1 -> N7

Path for N9 = N1 -> N7 -> N9

Path for N10 = N1 -> N7 -> N9 -> N10

 From above observation the criticality of modules is:

 N5 = N6

 N7 > N9 > N10 = N3

Step 3:

Modules showing same value of C are kept in same build.

Distinction in the criticality of modules N3, N10 and N5, N6 cannot be made, following above rule the criticality of all the

modules is:

N1 > N4 > N5 = N6 > N8 > N11 > N7 > N9 > N10 = N3 > N2

Step 4:

Module(s) are tested in decreasing order of their criticality factor values.

Using above rule, the builds are:

Build 1 = N1

Build 2 = N4

Build 3 = N5, N6

Build 4 = N8

Build 5 = N11

Build 6 = N7

Build 7 = N9

Build 8 = N10, N3

Build 9 = N2

Each build will contain more than one modules (in most of the cases) if a more complex software system (containing many modules)

is taken into account.

The build testing can now be applied to these builds which tell the tester that the given system can be tested further or not, that is,

whether the given system is of any use or not.

CASE STUDY 2

Taking in account the example of User Data Storage Device (UDSD) System

The User Data Storage Device (UDSD) System represents the minimal features of user data storage device. User can load new data on

storage device, update the existing data (data on storage device), and can directly load the network data (user data taken directly from

internet). Using the network data user can access the E-Mails or other relevant data. The user data is automatically processed after

every action on the storage media take place. At the end user can exit from the system.

http://www.ijergs.org/

International Journal of Engineering Research and General Science Volume 3, Issue 5, September-October, 2015
ISSN 2091-2730

931 www.ijergs.org

Modules are:

MODULE NUMBERS MODULES

1 Main() //main function

2 Load_user_data() //loads user data

3 Process() //processes user data

4 Done() //display message processing is

done

5 Mark_read() //marks read when data is read by

device

6 Get_sms_email() //takes sms/email from internet()

7 Update_data() //updates user data

8 Load_network_data() //load data from the internet

9 Exit() //exits from program

TABLE 4

Layout of User Data Storage Device (UDSD) System

FIG 2

Call graph of User Data Storage Device (UDSD) System

MODULE

NUMBERS

MODULE

PREDECESSORS

MODULE

SUCCESSORS
1 - 2, 7, 8, 9

2 1 3

3 2, 6, 7 5

4 5 -

5 3 4

6 8 3

7 1 3

8 1 6

9 1 -

http://www.ijergs.org/

International Journal of Engineering Research and General Science Volume 3, Issue 5, September-October, 2015
ISSN 2091-2730

932 www.ijergs.org

TABLE 5

Friends of nodes in UDSD System

Criticality Factor of modules using the formula —

Module (Predecessors) = Number of modules calling the i
th

 module

Module (Successors) = Number of modules being called by i
th

 module

Graph (Successors) = ΣModule (Successors), where indegree ≠0

 Using Table 5, Graph (Successors) = 10

The table of Criticality Factor of Modules for UDSD System is:

MODULE NUMBERS CRITICALITY FACTOR
1 0.4

2 0.1

3 0.1

4 0

5 0.1

6 0.1

7 0.1

8 0.1

9 0

TABLE 6

Criticality factor of modules of UDSD system using Formula 1

Step 1:

If Criticality Factor (C) of two modules M1 and M2 shows same value, then

 If Module M1 (Predecessor) > Module M2 (Predecessor) then

 Module M1 is considered more critical than module M2.

The modules (4, 9) and (2, 3, 5, 6, 7, 8) have the same Criticality Factor, based on given rule the criticality of modules is:

N4 = N9

N3 > N5 = N6 = N7 = N8

Step 2:

If M1 (Successors) == M2 (Successors) and

M1 (Predecessor) == Module M2 (Predecessor) then

 Compute the path length from root node to M1 and M2 using Breath First Search (BFS) method.

Module with smaller path length is considered more critical.

There is ambiguity in modules (4, 9) and (2, 5, 6, 7, 8), following the above rule:

By applying BFS the result is:

Path for N4 = N1 -> N2 -> N3 -> N5 -> N4

Path for N9 = N1 -> N9

Path for N2 = N1 -> N2

http://www.ijergs.org/

International Journal of Engineering Research and General Science Volume 3, Issue 5, September-October, 2015
ISSN 2091-2730

933 www.ijergs.org

Path for N5= N1 -> N2 -> N3 -> N5

Path for N6 = N1 ->N8 -> N6

Path for N7 = N1 -> N7

Path for N8 = N1 -> N8

 From above observation the criticality of modules is:

 N9 > N4

 N2 = N7 = N8 > N6 > N5

Step 3:

Modules showing same value of C are kept in same build.

Distinction in the criticality of modules N2, N7, N8 cannot be made, following above rule the criticality of all the modules is:

N1 > N3 > N2 = N7 =N8 > N6 > N5 > N9 > N4

Step 4:

Module(s) are tested in decreasing order of their criticality factor values.

Using above rule, the builds are:

Build 1 = N1

Build 2 = N3

Build 3 = N2, N7, N8

Build 4 = N6

Build 5 = N5

Build 6 = N9

Build 7 = N4

The build testing can now be applied to these builds which tell the tester that the given system can be tested further or not, that is,

whether the given system is of any use or not.

CASE STUDY 3

Taking in account the example of Movie Theatre System

The Movie Theatre System represents the minimal features of a movie theatre. User can choose the movie of the choice, can book

required number of seats as per the luxury (only if seats are available in asked slot), and can buy food items. The tickets will be

printed automatically with a bill signifying total payable amount to user.

Modules are:

MODULE NUMBERS MODULES
1 Main() //Main function

2 Movie1() //Movie name

3 Movie2() //Movie name

4 Movie3() //Movie name

5 Movie4() //Movie name

6 Number_of_seats() //Number seats chosen

http://www.ijergs.org/

International Journal of Engineering Research and General Science Volume 3, Issue 5, September-October, 2015
ISSN 2091-2730

934 www.ijergs.org

7 Type_of_seats() //Type of seats (diamond, gold,

silver, etc.)

8 Payable_amount() //Total payable amount

9 Food() //Food bought

10 Print_bill() //Print bill

11 Print_ticket() //Print movie tickets

TABLE 7

Layout of Movie Theatre System

FIG 3

Call graph of User Data Storage Device (UDSD) System

MODULE

NUMBERS

MODULE

PREDECESSORS

MODULE

SUCCESSORS

1 - 2, 3, 4, 5, 9

2 1 6

3 1 6

4 1 6

5 1 6

6 2, 3, 4, 5 7

7 6 8, 9

8 7, 9 10, 11

9 1, 7 8

10 10, 11 -

http://www.ijergs.org/

International Journal of Engineering Research and General Science Volume 3, Issue 5, September-October, 2015
ISSN 2091-2730

935 www.ijergs.org

11 8 10

TABLE 8

Friends of nodes in Movie Theatre System

Criticality Factor of modules using the formula—

Module (Predecessors) = Number of modules calling the i
th

 module

Module (Successors) = Number of modules being called by i
th

 module

Graph (Successors) = ΣModule (Successors), where indegree ≠0

 Using Table 8, Graph (Successors) = 16

The table of Criticality Factor of Modules for Movie Theatre System is:

MODULE NUMBERS CRITICALITY FACTOR
1 0.3125

2 0.0625

3 0.0625

4 0.0625

5 0.0625

6 0.0625

7 0.125

8 0.125

9 0.0625

10 0

11 0.0625

TABLE 9

Criticality factor of modules of MOVIE THEATRE system using Formula 1

Step 1:

If Criticality Factor (C) of two modules M1 and M2 shows same value, then

 If Module M1 (Predecessor) > Module M2 (Predecessor) then

 Module M1 is considered more critical than module M2.

The modules (7, 8) and (2, 3, 4, 5, 6, 9, 11) have the same Criticality Factor, based on given rule the criticality of modules is:

N8 > N7

N6 > N9 > N2 = N3 = N4 = N5 = N11

Step 2:

If M1 (Successors) == M2 (Successors) and

M1 (Predecessor) == Module M2 (Predecessor) then

 Compute the path length from root node to M1 and M2 using Breath First Search (BFS) method.

http://www.ijergs.org/

International Journal of Engineering Research and General Science Volume 3, Issue 5, September-October, 2015
ISSN 2091-2730

936 www.ijergs.org

Module with smaller path length is considered more critical.

There is ambiguity in modules (2, 3, 4, 5, 11), following the above rule:

By applying BFS the result is:

Path for N2 = N1 -> N2

Path for N3 = N1 -> N3

Path for N4 = N1 -> N4

Path for N5 = N1 -> N5

Path for N6 = N1 -> N9 -> N8 -> N11

 From above observation the criticality of modules is:

 N2 = N3 = N4 = N5 > N11

Step 3:

Modules showing same value of C are kept in same build.

Distinction in the criticality of modules N2, N3, N4, N5cannot be made, following above rule the criticality of all the

modules is:

 N1 > N8 > N7 > N6 > N9 > N2 = N3 = N4 = N5 > N11 > N10

Step 4:

Module(s) are tested in decreasing order of their criticality factor values.

Using above rule, the builds are:

Build 1 = N1

Build 2 = N8

Build 3 = N7

Build 4 = N6

Build 5 = N9

Build 6 = N2, N3, N4, N5

Build 7 = N11

Build 8 = N10

The build testing can now be applied to these builds which tell the tester that the given system can be tested further or not, that is,

whether the given system is of any use or not.

CASE STUDY 4

Taking in account the example of Simple Automatic Teller Machine (SATM) System, (taken from ―Software Testing, A Craftsman’s

Approach ―, Third Edition, by Paul C. Jorgensen ―)

The Simple Automatic Teller Machine (SATM) System consists most of the features of an ATM. The user can withdraw or deposit

money from it only after the PIN verification, can modify the account password, can see the present balance and print a receipt for it.

The machine automatically dispenses the money entered by user (only if amount of money in user account is greater than or equal to

the entered amount), and the balance is updated automatically depending on the transaction. At the end user can close the present

session.

http://www.ijergs.org/

International Journal of Engineering Research and General Science Volume 3, Issue 5, September-October, 2015
ISSN 2091-2730

937 www.ijergs.org

Modules are:

MODULE

NUMBER

MODULE

SEQUENCE

MODULES

1 1 SATM System

2 1.1 Device Sense and Control

3 1.1.1 Door Sense and Control

4 1.1.1.1 Get Door Status

5 1.1.1.2 Control Door

6 1.1.1.3 Dispense Cash

7 1.1.2 Slot Sense and Control

8 1.1.2.1 Watch Card Slot

9 1.1.2.2 Get Deposit Slot Status

10 1.1.2.3 Control Card Roller

11 1.1.2.4 Control Envelope Roller

12 1.1.2.5 Read Card Strip

13 1.2 Central Bank Communication

14 1.2.1 Get PIN for PAN

15 1.2.2 Get Account Status

16 1.2.3 Post Daily Transactions

17 1.3 Terminal Sense and Control

18 1.3.1 Screen Driver

19 1.3.2 Key Sensor

20 1.4 Manage Session

21 1.4.1 Validate Card

22 1.4.2 Validate Pin

23 1.4.2.1 Get PIN

24 1.4.3 Close Session

25 1.4.3.1 New Transaction Request

http://www.ijergs.org/

International Journal of Engineering Research and General Science Volume 3, Issue 5, September-October, 2015
ISSN 2091-2730

938 www.ijergs.org

26 1.4.3.2 Print Receipt

27 1.4.3.3 Post Transaction Local

28 1.4.4 Manage Transaction

29 1.4.4.1 Get Transaction Type

30 1.4.4.2 Get Account Type

31 1.4.4.3 Report Balance

32 1.4.4.4 Process Deposit

33 1.4.4.5 Process Withdrawal

TABLE 10

Layout of SATM System

FIG 4

Call graph of User Data Storage Device (UDSD) System

MODULE

NUMBERS

MODULE

PREDECESSORS

MODULE SUCCESSORS

1 - 2, 13, 17 ,20

2 1 3, 7

http://www.ijergs.org/

International Journal of Engineering Research and General Science Volume 3, Issue 5, September-October, 2015
ISSN 2091-2730

939 www.ijergs.org

3 2 4, 5, 6

4 3 -

5 3 -

6 3 -

7 2 8, 9, 10, 11, 12

8 7 -

9 7 -

10 7 -

11 7 -

12 7 -

13 1 14, 15, 16

14 13 -

15 13 -

16 13 -

17 1 18, 19

18 17 -

19 17 -

20 1 21, 22, 24, 28

21 20 -

22 20 23

23 22 -

24 20 25, 26, 27

25 24 -

26 24 -

27 24 -

28 20 29, 30, 31, 32, 33

29 28 -

30 28 -

http://www.ijergs.org/

International Journal of Engineering Research and General Science Volume 3, Issue 5, September-October, 2015
ISSN 2091-2730

940 www.ijergs.org

31 28 -

32 28 -

33 29 -

TABLE 11

Friends of nodes in SATM System

Criticality Factor of modules using the formula—

Module (Predecessors) = Number of modules calling the i
th

 module

Module (Successors) = Number of modules being called by i
th

 module

Graph (Successors) = ΣModule (Successors), where indegree ≠0

 Using Table 11, Graph (Successors) = 32

The table of Criticality Factor of Modules for SATM System is:

MODULE

NUMBERS

CRITICALITY

FACTOR
1 0.125

2 0.062

3 0.093

4 0

5 0

6 0

7 0.156

8 0

9 0

10 0

11 0

12 0

13 0.093

14 0

http://www.ijergs.org/

International Journal of Engineering Research and General Science Volume 3, Issue 5, September-October, 2015
ISSN 2091-2730

941 www.ijergs.org

15 0

16 0

17 0.062

18 0

19 0

20 0.125

21 0

22 0.031

23 0

24 0.093

25 0

26 0

27 0

28 0.156

29 0

30 0

31 0

32 0

33 0

TABLE 12

Criticality factor of modules of SATM System using Formula 1

Step 1:

If Criticality Factor (C) of two modules M1 and M2 shows same value, then

 If Module M1 (Predecessor) > Module M2 (Predecessor) then

 Module M1 is considered more critical than module M2.

The modules (1, 20), (2, 17), (3, 13, 24), (7, 28) and (4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16, 18, 19, 21, 23, 25, 26, 27, 29, 30, 31,

32, 33) have the same Criticality Factor, based on given rule the criticality of modules is:

N20 > N1

N2 = N17

N3 = N13 = N24

N7 = N28

N4 = N5 = N6 = N8 = N9 = N10 = N11 = N12 = N14 = N15 = N16 = N18 = N19 = N21 = N23 = N25 = N26 = N27 =

N29 = N30 = N31 = N32 = N33

http://www.ijergs.org/

International Journal of Engineering Research and General Science Volume 3, Issue 5, September-October, 2015
ISSN 2091-2730

942 www.ijergs.org

Step 2:

If M1 (Successors) == M2 (Successors) and

M1 (Predecessor) == Module M2 (Predecessor) then

 Compute the path length from root node to M1 and M2 using Breath First Search (BFS) method.

Module with smaller path length is considered more critical.

There is ambiguity in modules (2, 17), (3, 13, 24), (7, 28) and (4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16, 18, 19, 21, 23, 25, 26, 27,

29, 30, 31, 32, 33), following the above rule :

By applying BFS the result is:

Path for N2 = N1 -> N2

Path for N17 = N1 -> N17

Path for N3 = N1 -> N2 -> N3

Path for N13 = N1 -> N13

Path for N24 = N1 -> N20 -> N24

 Path for N7 = N1 -> N2 -> N7

Path for N28 = N1 -> N20 -> N28

Path for N4 = N1 -> N2 -> N3 -> N4

Path for N5 = N1 -> N2 -> N3 -> N5

Path for N6 = N1 -> N2 -> N3 -> N6

Path for N8 = N1 -> N2 -> N7 -> N8

Path for N9 = N1 -> N2 -> N7 -> N9

Path for N10 = N1 -> N2 -> N7 -> N10

Path for N11 = N1 -> N2 -> N7 -> N11

Path for N12 = N1 -> N2 -> N7 -> N12

Path for N14 = N1 -> N13 -> N14

Path for N15 = N1 -> N13 -> N15

Path for N16 = N1 -> N13 -> N16

Path for N18 = N1 -> N17 -> N18

Path for N19 = N1 -> N17 -> N19

Path for N14 = N1 -> N13 -> N14

Path for N21 = N1 -> N20 -> N21

Path for N23 = N1 -> N20 -> N22 -> N23

Path for N25 = N1 -> N20 -> N24 -> N25

Path for N26 = N1 -> N20 -> N24 -> N26

Path for N27 = N1 -> N20 -> N24 -> N27

Path for N29 = N1 -> N20 -> N28 -> N29

Path for N30 = N1 -> N20 -> N28 -> N30

Path for N31 = N1 -> N20 -> N28 -> N31

Path for N32 = N1 -> N20 -> N28 -> N32

Path for N33 = N1 -> N20 -> N28 -> N33

 From above observation the criticality of modules is:

N2 = N17

N13 > N3 = N24

N7 = N28

N14 = N15 = N16 = N18 = N19 = N21 > N4 = N5 = N6 = N8 = N9 = N10 = N11 = N12 = N23 = N25 = N26 = N27 = N29

= N30 = N31 = N32 = N33

Step 3:

Modules showing same value of C are kept in same build.

Distinction in the criticality of modules (N2, N17), (N3, N24), (N7, N28), (N14, N15, N16, N18, N19, N21) and (N4, N5,

N6, N8, N9, N10, N11, N12, N23, N25, N26, N27, N29, N30, N31, N32, N33) cannot be made, following above rule the

criticality of all the modules is:

http://www.ijergs.org/

International Journal of Engineering Research and General Science Volume 3, Issue 5, September-October, 2015
ISSN 2091-2730

943 www.ijergs.org

N7 = N28 > N20 > N1 > N13 > N3 = N24 > N2 = N17 > N22 > N14 = N15 = N16 = N18 = N19 = N21 > N4 = N5 = N6 =

N8 = N9 = N10 = N11 = N12 = N23 = N25 = N26 = N27 = N29 = N30 = N31 = N32 = N33

Step 4:

Module(s) are tested in decreasing order of their criticality factor values.

Using above rule, the builds are:

Build 1 = N7, N28

Build 2 = N20

Build 3 = N1

Build 4 = N13

Build 5 = N3, N24

Build 6 = N2, N17

Build 7 = N22

Build 8 = N14, N15, N16, N18, N19, N21

Build 9 = N4, N5, N6, N8, N9, N10, N11, N12, N23, N25, N26, N27, N29, N30, N31, N32, N33

The build testing can now be applied to these builds which tell the tester that the given system can be tested further or not, that is,

whether the given system is of any use or not.

CONCLUSION

The above mentioned method for finding criticality factor of nodes (Software Modules) is very useful whenever it is difficult for the

software tester to decide which modules are more critical on the basis of functional dependency of the modules. Using this

methodology, tester can even find out the most critical and least critical modules as well.

This method can be vastly used by tester before beginning any test. For initialising the Build Testing, which depends on the criticality

of different modules of the given system, this technique is very useful as shown in above examples.

It is found that testing the most critical node is always the first priority of every tester and hence this technique is very useful in every

aspect.

REFERENCES:

[1] Paul C. Jorgensen, ―Software Testing, A Craftsman’s Approach ―, Third Edition

[2] K. K. Aggarwal, Yogesh Singh, ―Software Engineering‖, Third Edition

[3] Kan S H, Basili V R, Shapiro L N 1994 Software Quality : An overview from the perspective of total quality management

[4] Roge´rio Paulo, ―Integration Testing‖, January 12, 2007

[5] V V S Sarma, D Vijay Rao, ―A re-entrant line model for software product testing‖, 1997

[6] Praveen Ranjan Srivastava, Subrahmanyan Sankaran, Pushkar Pandey, Optimal Software Release Policy Approach Using

Test Point Analysis and Module Prioritization, 2013

[7] http://www.cognizant.com/InsightsWhitepapers/Risk%20Based%20Testing.pdf

[8] https://en.wikipedia.org/wiki/Integration_testing

[9] https://en.wikipedia.org/wiki/Build_verification_test

[10] http://www.softwaretestingstuff.com/2008/06/build-verification-testing.html

http://www.ijergs.org/
http://www.cognizant.com/InsightsWhitepapers/Risk%20Based%20Testing.pdf
https://en.wikipedia.org/wiki/Integration_testing
https://en.wikipedia.org/wiki/Build_verification_test
http://www.softwaretestingstuff.com/2008/06/build-verification-testing.html

International Journal of Engineering Research and General Science Volume 3, Issue 5, September-October, 2015
ISSN 2091-2730

944 www.ijergs.org

[11] http://searchsoftwarequality.techtarget.com/definition/build

[12] https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CBwQFjAAahUKEwj8

w82KqrPIAhULBo4KHba5A98&url=http%3A%2F%2Fwww.istqb.org%2Fdownloads%2Ffinish%2F20%2F212.html&usg=

AFQjCNEYHr045l6c8qE44Q66LFmQfhMFiw

http://www.ijergs.org/
http://searchsoftwarequality.techtarget.com/definition/build
https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CBwQFjAAahUKEwj8w82KqrPIAhULBo4KHba5A98&url=http%3A%2F%2Fwww.istqb.org%2Fdownloads%2Ffinish%2F20%2F212.html&usg=AFQjCNEYHr045l6c8qE44Q66LFmQfhMFiw
https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CBwQFjAAahUKEwj8w82KqrPIAhULBo4KHba5A98&url=http%3A%2F%2Fwww.istqb.org%2Fdownloads%2Ffinish%2F20%2F212.html&usg=AFQjCNEYHr045l6c8qE44Q66LFmQfhMFiw
https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CBwQFjAAahUKEwj8w82KqrPIAhULBo4KHba5A98&url=http%3A%2F%2Fwww.istqb.org%2Fdownloads%2Ffinish%2F20%2F212.html&usg=AFQjCNEYHr045l6c8qE44Q66LFmQfhMFiw

