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Abstract  

Lot sizing problem in Material Requirement Planning (MRP) systems belongs to those problems that industrial manufacturers face 

daily in organizing their overall production plans. Lot sizing plays an important role in minimization of totalcost (i.e. sum of setup and 

holding cost). When multiple levels, multiple items and capacity restrictions are involved in an inventory lot sizing problem, 

determination of optimum lot sizes becomes very complicated and may be treated as NP hard class of problems. However this 

combinatorial optimization problem can be solved by using soft computing techniques in a reasonable CPU time when small instances 

are considered. Many heuristic techniques were developed in the past to solve lot sizing problems but most of them were failed in 

successful implementation. In this paper the authors are presenting an Iterative improvement binary particle swarm optimization 

(IIBPSO) techniques for solving very large capacitated multi item multi level lot sizing problem (CMIMLLS). In the proposed 

algorithm first a set of initial solution is randomly choosen then, used the particles to find solution according to standard mechanism of 

binary particle swarm optimization (BPSO). After reaching a reasonable solution point, a hybrid selection with iterative improvement 

local search mechanism is applied to restart the algorithm. Hybrid selection is a kind of restart mechanism in BPSO, and finally a local 

search is used on the global best solution to improve the solution quality. The IIBPSO algorithm showed good experimental results 

and outperforms all other approaches in terms of quality of solution. 

Keywords: inventory lot sizing, material requirement planning, hybrid particle swarm optimization. 

1. Introduction 

In most manufacturing and distribution companies, the highest individual cost is inventory. The cost of the inventory is directly related 

to the amount of inventory held and the bulk of manufacturers admit they consistently carry too much of it. Executives usually believe 

that the higher the service level is, the more stock is required. However, as demand forecasts are often inaccurate, inventory piles up, 

exposure to obsolescence increases, salable throughput decreases and customer service finally declines. Thus too much inventory 

further compounds service problems. But inventory reduction may be carried out at the expense of an increased cadence of orders. 

Unfortunately setup costs cannot come to zero even if they have been considerably reduced on grounds of just-in- time (JIT) 

guidelines. Thus critical to achieving a satisfactory trade-off between set-up costs and inventory holding costs is to implement proper 

lotsizing rules. But even the most comprehensive MRP systems do not provide an efficient methodology. In fact, commercially-

available MRP software typically comes with the simplest yet suboptimal lot-sizing approaches [1]. 

Lot sizing problem attracted the attention because of its impact on the inventory levels and hence the total cost of production. It is 

basically concerned with finding order quantities of different items in the bill of material structure to minimize the setup cost and 

holding cost. Lot size might be the amount of production or purchase quantity depending on the demand at different time buckets to 

ensure and satisfy customer requirements [2]. Minimizing total production cost is always a tradeoff decision between ordering and 

holding cost. In the decision making, a number of factors need to be considered; carrying cost, setup cost, shortage cost, capacity 

restrictions, minimum order quantity, maximum order quantity, handling restrictions, quantity discounts, etc. All these factors can be 

combined to generate different models. For instance, some of the costs can be considered zero or infinity and some of the restrictions 

can be relaxed. Depending on the applicable model, different solution procedures exist. The model is complicated, along with its 

corresponding solution procedure, by the number of items considered, i.e., single item and multi item considerations. Another possible 

complication in the model is the inclusion of multi-levels consideration and capacity constraints. Hence the problem of lot sizing still 

stood as challenging problem of optimization and attracted research community. 
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The lot sizing problems can be mainly divided into Single level lot sizing problems (SLLS) and Multi-level lot sizing (MLLS) 

problems with and without capacity restrictions. SLLS problems without capacity restriction are simplest among them. Several 

heuristics were developed and successfully implemented on SLLS problems. In 1958, Wagner and Whitin (2004)   introduced the 

SLLS model and developed a well-known exact algorithm based on dynamic programming]After that, Silver and Meal (1973) 

proposed the idea of minimizing average setup and inventory costs over several periods. Mc Knew and Coleman (1991) proposed a 

part period algorithm for minimizing setup and holding cost over different periods. Hernández, W. and G. Süer, proposed a genetic 
algorithm (GA) for solving single level uncapacitated lot sizing problem with no shortages. A few heuristics techniques were also 

developed to solve MLLS problems. N.Dellart, J.Jeunet successfully applied a Randomized multi-level lot-sizing heuristics for 

general product structures. Regina Berretta, Luiz Fernando Rodriguez proposed A memetic algorithm for a multi stage capacitated lot 

sizing problem .Taˇsgetiren and Liang presented particle swarm optimization (PSO) in 2003 to minimize the inventory setup and 

holding cost for minimization of simple product structures N.Dellart, J.Jeunet, N.Jonard successfully applied PSO for uncapacitated 

multi level lot sizing problem with flexible initial weight .Klorklear Wajanawichakon and  Rapeepan Pitakaso implemented PSO 

(2011) for multi level unconstrained problems of general product structures.  

 
In this paper, the authors have made an attempt to solve very large and complex product structure of capacity constrained multi item 

multi level lot sizing problem (MIMLLS). An iterative improvement search with BPSO approach is used to simulate CMIMLLS 

problem and solved several problems with time and solution efficiency. The authors have also solved the problems considered using 

Genetic Algorithm, BPSO and IIBPSO separately. The results of Binary GA, Iterative Improvement BGA (IIBGA) and BPSO are 

compared with the proposed method IIBPSO for the same set of problems under consideration. The Paper is organized in six sections:  

section2: mathematical formulation of CMIMLLS problem section3: IIBPSO procedure Section 4: numerical example section5: 

problem illustration and section6: conclusion is presented. 

 

2. Mathematical Formulation of problem: 

The lot sizing problem that we considered in this paper can be described as follows. We have „N‟ items to be produced in  „T‟ periods 

in a planning horizon such that a demand forecast would be attained .In a multistage production systems ,the planning horizon of each 

item depends on the production of other items, which are situated at lower levels. The resources for production and setup are limited. 

Lead times are assumed to be zero. 

Let N be the number of items, T the number of periods in the planning horizon the number of types of resources. Cit the unit 

production cost item I in period t, hit the unit holding cost of item I in period t,Sit is the setup cost of item i in period t,dit the demand 

for item I in period t,Vikt  the amount of resource k necessary to produce item i in period t, bkt is the amount of resource k available in 

period t, M is the upper bound on Xit ,S(i) the set of immediate successor items to item I, and rij is the number of units of item i needed 

by one unit of item j, where jϵ S(i). 

Decision variables are xij is the lot size of item i in period t, yit is „1‟ if item is produced in period t and zero otherwise. Iit the inventory 

of item i in period t. 

                        Min (f(x)) =∑ ∑                       
 
   

 
    ………………………………...(1) 

                                                                                                 

∑             …………………………………………….… (2) 

                      i=1, 2,…….N ; T=1,2,………T 

                                                                                                           ∑                  
 
    

   ……………………………………………………….… (3) 

 k=1, 2, 3,…….K; t=1,2,3,…….T 

                                                i=1,…..N;     t=1,…..,T   ……………………………..……(4) 

 

                                 i=1,…..N;    t=1,…..,T    ……………….…..……………..(5) 

 

                                   i=1…N;    t=1,…..,T………………..…………………..(6) 
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The objective function (1) is to minimize the sum of production, inventory holding and setup cost in T periods. Equation (2) is 

inventory balance constraint, which describe the relationship between inventory and production at the beginning and the end of the 

period. Constraint (3) represents the capacity limitations of production and setup. Constraint(4) ensure that the solution will have 

setup when it has production .The last two constraints (5) and (6) require that variables must be positive and setup variables must be 

binary.  

Several factors like ordering cost, holding cost, shortage cost, capacity constraints, minimum and maximum order quantity etc... 

Combination of these factors result in different models to be analyzed like capacitated or uncapacitated, single level or multi level, 

single item or multi item models.simple single product structures can be solved easily using mathematical equations .as  CMIMLLS 

problems are  having very large solution space they are  considered as NP-hard problems that does not have solution with polynomial 

time. So soft computing techniques are necessary to compute optimum values of lot sizes.   

In this paper authors have made an attempt to solve very large complex product structure of capacity constrained multi product multi 

level lot sizing problem. An iterative improvement binary PSO approach is used to simulate CMIMLLS problem and solved the same 

with time and solution efficiency. The authors have also solved similar problems using BGA, IIBGA, and BPSO. The results of BGA, 

IIBGA, BPSO, and IIBPSO are compared for the same set of problems under consideration. 

 

3. Iterative Improvement Search Binary Particle Swarm Optimization (IIBPSO) Procedure:  

Particle Swarm Optimization (PSO) is one of the evolutionary optimization methods inspired by nature which include evolutionary 

strategy (ES), evolutionary programming (EP), genetic algorithm (GA), and genetic programming (GP). PSO is distinctly different 

from other evolutionary-type methods in that it does not use the filtering operation (such as crossover and/or mutation) and the 

members of the entire population are maintained through the search procedure. In PSO algorithm, each member is called “particle”, 

and each particle flies around in the multi-dimensional search space with a velocity, which is constantly updated by the particle‟s own 

experience and the experience of the particle‟s neighbors. Since PSO is basically developed through simulation of bird flocking in the 

two dimensional space and was first introduced by Kennedy and Eberhart (1995, 2001), it has been successfully applied to optimize 

various continuous nonlinear functions. Although the applications of PSO on combinatorial optimization problems are still limited, 

PSO has its merit in the simple concept and economic computational cost. 

The main idea behind the development of PSO is the social sharing of information among individuals of a population. In PSO 

algorithms, search is conducted by using a population of particles, corresponding to individuals as in the case of evolutionary 

algorithms. Unlike GA, there is no operator of natural evolution which is used to generate new solutions for future generation. Instead, 

PSO is based on the exchange of information between individuals, so called particles, of the population, so called swarm. Each 

particle adjusts its own position towards its previous experience and towards the best previous position obtained in the swarm. 

Memorizing its best own position establishes the particle‟s experience implying a local search along with global search emerging from 

the neighboring experience or the experience of the whole swarm. Two variants of the PSO algorithm were developed, one with a 

global neighborhood, and other one with a local neighborhood. According to the global neighborhood, each particle moves towards its 

best previous position and towards the best particle in the whole swarm, called gbest model. If binary values (0 or 1) are used as 

particle dimensions it is called as Binary Particle Swarm Optimization (BPSO). 

Even though we might find a good set of parameters for BPSO, Iterative Improvement search is still worth while trying to improve the 

performance of the solution. Local search algorithms move from solution to solution in the space of candidate solutions (the search 

space) by applying local changes, until a solution deemed optimal is found or a time bound is elapsed and helps to escape from local 

minima. Iterative Improvement search is one such local search algorithm which helps in improving solution efficiency. 

(a) Initialization 

In PSO algorithm, each member is called particle and each one represents one particular solution to the given problem. Group of 

particles is called as swarm. 

(i) Initialization of particle 

In multi level inventory problems each particle is represented by a matrix of m×n. where m represents the number of items involved in 

the problem, represents time buckets. And particle representation is X
pt

 id . 

Here p= particle number. 

t=iteration number (represents row number) 

i=item number (represents column number) 

d=time period.  

Example: 

7 items and 6 periodic demands are involved in the problem then particle is represented by 7×6 matrix. 
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As it is initial generation, all dimentions of particle are assigned to “0” or “1” randomly. 

If R > 0.5 then X
pt

 id =1. 

                    Else X
pt

 id=0. 

Here R represents a random number. 
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Figure. 1 Particle dimension representation 

 

X
pt

 id  represents  p
th

 particle of t
th

 iteration and swarm contains  p different  particles like this. 

(ii) According to particle dimensions, fitness needs to be calculated for each and every particle, i.e. fitness (X
pt

 id). 

(iii) Initialization of particle velocities 

After defining particle dimensions particle velocities needs to be calculated. For initial generation velocity calculation can be done 

using following formula 

V
p0

 id =Vmini+ (Vmaxi-Vmini)*R 

here [Vmaxi, Vmini]=[-x,x],here x is an integer. 

Ex:  let [Vmaxi, Vmini]=[-5,5]  
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Figure. 2 Particle velocity representation  

 

(b) Updating Particle best and global best 

After defining swarm i.e. all particle dimensions, fitness needs to be calculated. After calculating fitness value we need to assign 

global best value to the paticle containing best fitness value. As it is the initial generation all particle best(PB
p,k

 id) values are equal to 

particle values. 

Here GB
t
 id  represents global best dimensions of  t

th
 iteration . 

Here PB
pt

 id represents paticle best dimensions of p
th 

particle  t
th

 iteration. 

(c)Updating parameters for next generations 

(i)Updating velocity of particle (V
pt

 id): 

                                        New velocity = V
pt

 id=P (V
p, t-1

 id +∆V
p, t-1

 id) 

                        ∆V
p, t-1

 id= c1 R1 (PB
p,t-1

 id - X
p,t-1

 id)+ c2 R2(GB
t-1

 id - X
p,t-1

 id)  

C1, c2 are social and cognitive parameters, R1& R2 are uniform random numbers between (0, 1)  
 Here Piece wise linear function [P (V

pt
 id)] 

P (V
pt

 id) = Vmaxi    if V
pt

 id > Vmaxi 

          =V
pt

 id      if |V
pt

 id| 
<_

Vmaxi 

           =Vmini    if V
pt

 id < Vmini 

(ii)Updating position (X
pt

 id) by sigmoid function: 

X
pt

 id= 1     if      R< S (V
pt

 id) 

   =0             otherwise 

Sigmoid function S (V
pt

 id): 

This function forces velocity values to be in the limits of „0‟ to „1‟.It helps to update next generation X
pk

 id values.                                     
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S (V
pt

 id) =
 

   
  

  
   

(iii)Updating particle best and global best (PB
p,t

 i,d ,GB
t
 i,d) 

After each and every iteration update particle best and global best values according to the fitness values of particles in the newly 

generated swarm. 

 

(d)Iterative Improvement Search Algorithm 

Iterative Improvement Search Algorithm is a local search that moves from one solution S to another S‟ according to some 

neighborhood structure. Search procedure usually consists of the following steps. 

(i) Initialization: Choose an initial schedule S to be the current solution and compute the value of the objective function F(S). 

(ii) Neighbour Generation: Select a neighbour S‟ of the current solution S and compute F(S‟). 

(iii) Acceptance Test: Iterative Improvement allows only strict improvement in the objective function value. It accepts a new solution 

S‟ only if F(S’) <F(S), where S is the current solution. Often instead of accepting the first neighbour with the value of the objective 

function smaller than F(S) for the current solution, the algorithm constructs all neighbours (or a given number of Neighbours) and 

selects the best one. 

(iv) Update particle best and global best values. 

(e) Termination:  

If the number of iterations reaches a predetermined value, called maximum number of iterations then stop searching, other wise go to 

(c) and repeat the procedure.  

Pseudo code of IIBPSO is given in Figure3. 

STEP1: Initialization phase 

Initialize swarm 

Assign velocities to all paticle 

Fitness calculation 

Particle best and global best 

 

STEP2: Iteration phase with IIBPSO search 

for (i=0; i<number of iterations; i++) 

 { 

Update particles velocities 

Update dimensions of particles 

Calculate Fitness values  

Update Particle and global best values 

Iterative improvement local search 

Update Particle and global best 

} 

STEP3: Iteration phase by local search for global best value 

for (i=0; i<number of iterations; i++)  

 {       

   Iterative improvement local search 

} 

Figure 3. Pseudo code of IIBPSO algorithm 

4. Numerical Example: 

A lot sizing problem of 7 items and 6 periods is taken from Jinxing Xie, Jiefang which is a general capacitated lot sizing problem 

(2002), and this example is also taken for the comparison with other problem considered in the paper. 

M.Fatih Tasgetiren and Yun-Chia Liang (2003) say that if population size (number of particles in swarm) is at least double the number 

of periods in the planning horizon performance would be better. According to Yuhui Shi (2004), PSO with minimum population size 5 

gives better performance. 
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But for the sake of convenience swarm size i.e. population size is taken as 3 in numerical example, even though all the problems are 

solved with population size of 40.  

Step1:   Swarm contains 3 particles, each of size 7×6 
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Step2: As it is first generation assign all particle values to particle best, and best fitness particle dimensions to global best value  
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Step3:  

Update Velocity using standard procedure of Binary particle swarm optimization 
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Update particle dimension matrix  according new velocity matrix of paticle 
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As particle 1 fitness value is improved, so first particles, particle best (PB1) value will be updated with current particle data. If fitness 

is not improved then particle best value will remain same. 

Like this update particle best and global best values will be updated for all particles in the according to fitness values. 

 

Step4: Repeat this procedure until iteration number k < max iteration. 

Local Search: 
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Fitness value of new particle is improved (10300>9820). As the solution is improved old particle (i.e. input particle) will be replaced 

with a new particle. 

Step5: 

After this goto step2 and repeat the procedure. If number of iterations are reached stop  

 

5. Problem Illustration 

Problems shown in Fig. 4a, 4b and 4c as M×T are taken for modeling and simulation of CMIMLLS problem. Here M represents the 

total number of items involved in the BOM structure and T represents the number of periods. Table 1 represents different costs 

involved and Table 2a,2b and 2c carries information regarding demand and  available capacity. Figure 4a is a BOM of single product 

where it contains 50×12 structure with 50 different items, 12 periods in 9 levels, Figure 4b is a BOM of a multi product contains 

39×12 structure with 39 different items, 12 periods in 6 levels and Figure 4c is a BOM of a multi product contains 75×36 structure 

with 75 different items, 36 periods in 10 levels. Table 1 gives the information regarding the setup cost (S.C.) and holding costs (H.C.) 

of different items of 50 ×12, 39×12 and 75×36 problems. Tables 2a, 2b and 2c give the information regarding demand and availability 

conditions.  
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Figure 4a Product structures of 50×12 single product problem 

 

Figure 4b Product structures of 39×12 multi product problem 
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Figure 4c Product structures of 39×12 multi product problem 

Table 1 Setup and Holding costs of different items in 50×12, 39×12,75×36 structures 

S.No 
50*12 

problem 

39*12 

problem 

75*36 

problem 
S.No 50*12 

problem 

39*12 

problem 

75*36 

problem 
S.No 

75*36 

problem H.C S.C H.C S.C H.C S.C H.C S.C H.C S.C H.C S.C H.C S.C 

1 97.83 780 40.08 490 50 410 26 7.53 540 1.45 580 30 580 51 18 800 

2 45.19 200 35.27 450 49 450 27 4.36 160 3.63 650 31 620 52 17 410 

3 43.82 590 59.66 90 50 430 28 18.52 480 4.35 450 30 610 53 16 350 

4 5.82 710 25.42 140 48 420 29 5.81 410 3.29 820 30 490 54 15 320 

5 26.04 890 10.42 880 47.2 250 30 1.93 140 5.04 620 30 300 55 14 280 

6 18.87 610 22.64 440 46 300 31 6.71 390 2.53 580 29 200 56 13 280 

7 27.03 920 22.31 70 42 500 32 15.35 370 3.3 340 29 200 57 12 180 

8 15.64 210 19.53 430 42.5 800 33 4.36 520 0.61 340 25 100 58 11 680 

9 2.67 490 1.34 930 40 400 34 3.28 700 2.52 80 25 120 59 10 190 

10 1.86 920 25.12 650 40.5 500 35 6.38 160 4.83 690 25 300 60 9 100 

11 23.5 520 9.46 740 37 200 36 3.47 290 3.44 430 27 400 61 8 480 

12 12.59 540 17.48 680 36 330 37 1.97 420 0.91 60 27 200 62 7 200 

66 67 68 69 70 71 72 73 74 75 

64 62 63 65 

58 59 60 61 

49 50 51 52 53 54 55 56 57 

41 42 43 44 45 46 47 48 

29 30 31 32 33 34 35 36 37 38 39 40 

22 
23 24 25 26 27 28 

13 14 15 16 17 18 19 20 21 

6 

2 3 4 1 

5 7 8 9 11 12 10 
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13 25.13 510 4.32 800 45 480 38 1.76 160 2.64 760 25 800 63 6 270 

14 16.42 500 14.28 220 40 450 39 6.41 450 2.65 180 25 100 64 5 600 

15 0.84 300 2.56 850 37 380 40 7.17 340 - - 25 250 65 4 210 

16 1.02 450 10.07 400 40 200 41 2.97 750 - - 27 450 66 3 700 

17 0.62 440 4.59 650 36 100 42 0.25 140 - - 28 100 67 3 100 

18 23.71 510 7.13 860 35 100 43 3.22 430 - - 26 200 68 3 200 

19 15.32 910 8.82 850 35 120 44 1.85 890 - - 25 800 69 3 100 

20 20.58 830 10.6 670 34 280 45 3.84 610 - - 26 100 70 3 150 

21 8.71 730 6.02 370 33 270 46 0.41 860 - - 24 500 71 3 200 

22 3.14 850 2.78 360 35 290 47 0.37 860 - - 24 480 72 2 100 

23 0.94 450 2.95 310 35 320 48 3.84 350 - - 22 250 73 2 200 

24 13.02 370 9.32 440 33 380 49 3.95 610 - - 21 600 74 2 100 

25 7.34 390 0.31 590 30 560 50 1.63 350 - - 19 100 75 1 100 

H.C.=Holding Cost  , S.C=Setup Cost 

 

Table 2a Demand and Availability of end product in 50×12 problem 

 

 

 

 

 

Table 2b Demand and Availability of end products in 39×12 problem 

 

 

 

 

 

 

Table 2c Demand and Availability of end products in 75×36 problem 

Period 1 2 3 4 5 6 7 8 9 10 11 12 

Demand 15 5 15 110 65 165 125 25 90 15 140 115 

Available 1000 2000 1000 0 5000 1000 0 500 800 500 1000 200 

period 1 2 3 4 5 6 7 8 9 10 11 12 

Item1 10 100 10 130 115 150 70 10 65 70 165 125 

available 1500 2000 0 1000 800 5000 0 800 500 1000 2000 200 

Item2 175 15 85 90 85 90 75 150 75 10 150 15 

available 0 1000 2000 1000 900 0 800 1200 500 500 1000 100 

Item3 135 165 15 105 25 120 50 60 5 140 60 10 

available 1000 2000 900 800 0 1000 1200 300 500 800 100 100 

period 1 2 3 4 5 6 7 8 9 10 11 12 

Item1 10 100 10 10 70 10 20 10 10 50 10 70 

available ∞ ∞ ∞ ∞ 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 

Item2 20 10 10 10 100 20 10 10 10 320 10 100 

available ∞ ∞ 0 ∞ 5000 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 

Item3 30 10 10 100 10 10 20 10 40 100 10 10 

available ∞ ∞ ∞ ∞ ∞ 5000 ∞ ∞ ∞ ∞ ∞ ∞ 

Item4 40 10 10 30 10 10 10 10 100 10 10 120 

available ∞ ∞ ∞ 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 

period 13 14 15 16 17 18 19 20 21 22 23 24 

Item1 10 100 10 60 10 10 50 10 10 10 30 10 

available ∞ ∞ ∞ ∞ ∞ 0 ∞ ∞ ∞ ∞ ∞ ∞ 

Item2 10 20 10 170 10 10 50 10 10 10 210 10 

available ∞ ∞ 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 

Item3 10 180 10 10 10 10 60 10 10 10 10 10 
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6. Results 

All capacitated large size lot sizing problems are coded in c language and run on Intel® Core™ Duo processors 667 MHz Front Side 

Bus and  2M Smart L2 Cache with 2GB RAM.  

The authors have solved all the test problems using BGA, IIBGA, and BPSO, IIBPSO, and results are compared among them. A lot 

sizing problem of 7 items and 6 periods which is taken from Jinxing Xie, Jiefang (2002), is also taken for the comparison. 

 Following tables 3, 5, 7 and figures 5, 6, 7 show the comparison of binary BGA, IIBGA, BPSO and IIBPSO algorithms at different 

iterations of different problems under consideration. Table 4,6,8,9 gives the information about the optimum values obtained for 

different test problems for different programming techniques. Table10 gives the percentage of improvement of solutions of BGA, 

BPSO, IIBPSO techniques when compared to BGA technique solution for different problems under consideration. 

  

Table 3 comparison 50×12 problem results among BGA, IIBGA, BPSO and IIBPSO  

 

 

 

 

 

 

 

 

available ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 

Item4 10 10 10 110 10 10 30 10 410 10 20 10 

available ∞ ∞ ∞ 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 

period 25 26 27 28 29 30 31 32 33 34 35 36 

Item1 20 10 90 10 10 310 10 250 10 10 90 10 

available ∞ ∞ ∞ ∞ 0 ∞ ∞ ∞ ∞ 1000 ∞ ∞ 

Item2 10 10 10 1000 10 10 10 10 10 10 80 10 

available ∞ ∞ ∞ ∞ 800 0 ∞ ∞ 500 ∞ ∞ ∞ 

Item3 600 10 100 10 10 10 10 10 600 10 10 10 

available ∞ ∞ ∞ ∞ 0 ∞ ∞ ∞ 0 ∞ ∞ ∞ 

Item4 50 10 10 10 800 10 10 10 90 10 10 10 

available ∞ ∞ ∞ ∞ 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 

50×12 

Iteration 

No. 

 

N No.(K) 

BGA IIBGA BPSO IIBPSO 

 

5 386,785.09 380,765.30 280,295.00 250295.00 
25 380,891.31 352114.59 243,797.00 241009.15 
50 350,503.75 330138.87 203,956.09 200037.17 

100 322,136.16 321142.15 193,128.11 199121.89 
200 279,484.72 290477.29 192,017.59 195192.04 
500 249,875.41 250132.65 189,013.95 185013.09 

1,000 234,587.08 230513.19 186,579.11 182599.11 
2,000 234,587.08 232187.12 186,543.84 183450.08 
5,000 234,489.03 223154.89 185,042.16 174057.32 

10,000 229,484.6 219803.29 184,629.19 173753.29 
15,000 229,484.6 214040.12 181,685.31 173753.29 
20,000 204,240.90 213108.00 181,685.31 173753.29 

30,000 204,140.90 191617.40 181,685.31 173753.29 
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Figure. 5 BGA, IIBGA, BPSO, IIBPSO comparison at different iterations 

 

Table 4 comparison 50×12 problem optimum results among BGA, IIBGA, BPSO and IIBPSO 

50×12 
BGA IIBGA BPSO IIBPSO 

204,140.90 191617.40 181,685.31 173753.29 

                             

Table 5 comparison 39×12 problem results among BGA,IIBGA, BPSO and IIBPSO 

39×12 

Iteration BGA IIBGA BPSO IIBPSO 

5 377,421.19 350605.65 246,901.17 246,901.17 

25 327,867.12 239426.79 217,583.65 213605.76 

50 242,463.20 204744.77 204,084.98 197578.04 

100 221,525.29 178650.31 202,884.17 191770.14 

200 199,022.79 178346.06 194,724.84 191770.14 

500 197,410.34 178244.00 193,219.70 186117.70 

1,000 197,410.34 177609.65 185,691.15 142889.60 

2,000 197,410.34 177609.65 185,691.15 142889.60 

5,000 197,410.34 177609.65 172,684.78 142889.60 

10,000 197,410.34 177609.65 172,682.56 142889.60 

15,000 197,410.34 177609.65 172,682.56 142889.60 

 

to
ta

l c
o

st
 

iteration number 

50×12 

BGA

IIBGA

PSO

IIBPSO
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Figure. 6 BGA, IIBGA, BPSO, IIBPSO comparison at different iterations 

Table 6 comparison 39×12 problem optimum results among BGA, IIBGA, BPSO and IIBPSO 

39×12 BGA IIBGA BPSO        IIBPSO 

197,410.34 177609.65 172,682.56 142889.60 

 

Table 7 comparison 75×36 problem results among BGA, IIBGA, BPSO and IIBPSO 

 

 

 

 

 

 

 

To
ta

l c
o

st
 

iteration number 

39×12 

BGA

IIBGA

BPSO

IIBPSO

75×36 

Iter No. 

 

N No.(K) 

BGA IIBGA BPSO IIBPSO 

 
5 152174144 151074134 89866320 89866320 

25 145240592 143150594 86317160 80226251 

50 131999600 128899511 79341128 77312117 

100 108485416 106374426 71873080 61752171 

200 99614824 99919883 60409328 60409328 

500 89866320 99614824 50344516 47817140 

1,000 86317160 54844216 47819130 39071648 

5,000 65511652 50344516 43816120 36459912 

10,000 54344516 50344516 43816120 36291480 

20,000 54344516 47444516 41817140 36205080 

30,000 54344516 47344516 41817140 36205080 
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Figure 7 BGA, IIBGA, BPSO, IIBPSO comparison at different iterations 

Table8 comparison 75×36 problem optimum results among BGA, IIBGA, BPSO and IIBPSO 

 

75×36 
BGA IIBGA BPSO IIBPSO 

54344516 47344516 41817140 36205080 

 

Table 9 comparisons 7×6, 50×12, 39×12, 75×36 problems optimum results among BGA, IIBGA, BPSO and IIBPSO 

 
BGA 

total cost 

IIBGA 

total cost 

BPSO 

total cost 

IIBPSO 

total cost 

7×6 9245 8320 8320 8320 

      204,140.90 191617.40 181,685.31 173753.29 

      197,410.34 177609.65 172,682.56 142889.60 

      54,344,516 47344516 41,817,140.0 36,205,080 

 

Table 10 Percentage improvement in solution when compared to BGA Solution 

 IIBGA 

(% of improvement) 

BPSO 

(% of  improvement) 

IIBPSO 

(% of  improvement) 7×6 10 10 10 

      6.13 11 16 

      10 12.5 28 

      12.8 23.06 33.38 
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