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ABSTRACT— During the last decade or so there have been significant generalizations of the idea of integral transforms. Many new 

uses of the transform method in engineering and physics applications are found. Some of these new applications have prompted the 

development of very specialized transforms, their roots, knowledge of the properties and uses of classical integral transforms, such as 

Fourier Transform and Laplace transform and having considered that they are as important today they have been for the last century or 

so, they have been given a more extensive treatment. The main aim of this paper is to find the Fourier-Laplace transforms of some 

special functions and this will be used for solving various differential and integral equations.  
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1. INTRODUCTION 

The transform is a method to convert a signal from one domain to another domain for extracting some other information contained in 

the signal which cannot be extracted from the signal in first domain. One of the important families of transforms is „Integral 

Transform‟. Actually, integral transform is an operator used to transform a signal into its equivalent form with the help of a „kernel‟ 

function by integrating the kernel multiplied signal. The integration process involved in transformation has conferred the name as 

„Integral Transform‟. 

Fourier transforms play an important part in the theory of many branches of science. A waveform-optical, electrical or acoustical- and 

its spectrum are appreciated equally as physically picturable and measurable entities, an oscilloscope enables us to see an electrical 

waveform and a spectroscope or spectrum analyzer enables us to see optical or electrical spectra [1].  Our acoustical appreciation is 

even more direct, since the ear hears spectra. Wave forms and spectra are Fourier transforms of each other; the Fourier transformation 

is thus an eminently physical relationship.       

The theory of Laplace transforms referred to as operational calculus has in recent years become an essential part of the mathematical 

background required of engineers, physicists, mathematicians and other scientist. This is because in addition to being of great 

theoretical interest in itself, Laplace transform methods provide easy and effective means for the solution of many problems arising in 

various fields of science and engineering [2]. 

So these Fourier and Laplace transforms have various uses in many fields separately. On combining these two transforms i.e. Fourier-

Laplace transforms also used for solving differential and integral equations. In this paper we find the Fourier-Laplace transform of 

some special functions which is help for solving differential equations. This paper is planned as follows: 

Preliminary results are given in section 2. In section 3, we have find the Fourier-Laplace transform of some special functions. Lastly 

conclusions are given in section 4.  Notations and terminology as per Zemanian. [3], [4].  

2. PRELIMINARY RESULTS 

The Fourier transform with parameter s of ( )f t denoted by  ( ) ( )F f t F s and is given by 

 ( ) ( ) ( )istF f t F s e f t dt




   ,   for parameter 0s  .                                                                                                                (2.1) 

The Laplace transform with parameter p of ( )f x denoted by  ( ) ( )L f x F p and is given by 

 
0

( ) ( ) ( )
px

L f x F p e f x dx
 

    , for parameter 0p  .                                                                                                                (2.2) 

The Conventional Fourier-Laplace transform is defined as 
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0

( , ) ( , ) ( , ) ( , )FL f t x F s p f t x K t x dtdx
 


     ,                                                                                                                     (2.3) 

where,    ,
i st ipx

K t x e
 

    .  

3. FOURIER-LAPLACE TRANSFORMS OF SOME SPECIAL FUNCTIONS 

3.1.  If    , ,FL f t x s p  denotes generalized Fourier-Laplace transform of  ,f t x then 

 1
i

FL
sp


  

Proof:- We have  

                      
0 0
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i st ipx

FL f t x e f t x dtdx
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FL e dtdx
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1 1
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0 1 0 1
i

isp isp sp


      

                          1
i

FL
sp


 

 

3.2.   If    , ,FL f t x s p  denotes generalized Fourier-Laplace transform of  ,f t x then 

       , , ,FL t a x b K a b s p      

Proof:              
0 0

i st ipx
FL t a x b e t a x b dtdx   

 
 

       

                                                              
0 0

ist pxt a e dt x b e dx 
 

    
 

 

                                                           
   . , , ,

i sa ipbisa pbe e e K a b s p
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We know that      
0

t a t dt a  


   Also      
0

a

t a t dt a     

            , , ,FL t a x b K a b s p      

3.3.  If    , ,FL f t x s p  denotes generalized Fourier-Laplace transform of  ,f t x then 

  2 2

1
FL tx

s p


    

Proof:

              

     
0 0

i st ipx
FL tx e tx dtdx

 
 

     

                                         0 0

.ist pxe tdt e xdx
 

   
 

                                         

0 00 0

1 . 1
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is is p p
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1 1
0 0 . 0 0ist pxe dt e dx
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0 0

1 ist pxe e
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                                           2 2 2 2

1 1
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s p s p
       

                     

  2 2

1
FL tx

s p


   

3.4.   If    , ,FL f t x s p  denotes generalized Fourier-Laplace transform of  ,f t x then 

 
     

1 1 2

1 1

1 !
n n

n n

n n

i n
FL t x

s p

   

 


  

Proof:       
0 0

i st ipxn n n nFL t x e t x dtdx
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3.5.  If    , ,FL f t x s p  denotes generalized Fourier-Laplace transform of  ,f t x then 

  
  

1at bxFL e
is a p b

 
 

  

Proof:      
0 0

i st ipxat bx at bxFL e e e dtdx
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3.6.   If    , ,FL f t x s p  denotes generalized Fourier-Laplace transform of  ,f t x then 

 
  2 2 2 2
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3.7.   If    , ,FL f t x s p  denotes generalized Fourier-Laplace transform of  ,f t x then 

 
  2 2 2 2
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FOURIER-LAPLACE TRANSFORMS OF SOME ELEMENTARY FUNCTIONS 

Sr. No.  ,f t x      , ,FL f t x F s p  
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4.  CONCLUSION 
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In this work we have find the Fourier-Laplace transforms of some special functions and this will be used for solving various 

differential and integral equations.  
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