Simulation of Quarter Car Model Using Matlab

Kuldeep.K.Jagtap¹, Dhananjay.R.Dolas²
PG Scholar, JNEC,Aurangabad¹, Associate Professor, JNEC, Aurangabad²
kdjagtap007@gmail.com¹,dhananjay_dolas@rediffmail.com²

Abstract
Vehicle suspension design includes a number of compromises to provide good leveling of stability and ride comfort. Suspension system has to perform complexity requirements, which includes road holding and equality, driving pleasure, riding comfort to occupant. Riding pleasure depends on vertical acceleration, with main objective to minimize vertical acceleration. In this work, the geometric parameters of suspension system are optimized using Matlab as an optimization tool. The values of tire deflection reduced from 0.023 to 0.021 m and Seat acceleration reduced from 34.19 to 31.86 m/s².

Keywords
Seat Acceleration, Tire Deflection, ride comfort, mathematical model.

I. INTRODUCTION
Traditionally automotive suspension designs have been a compromise between the three conflicting criteria of road holding, load carrying and passenger comfort. The suspension system must support the vehicle, provide directional control during handling maneuvers and provide effective isolation of passengers/payload from road disturbances. The parameters of Passive Suspension system are generally fixed, being chosen to achieve a certain level of compromise between road holding, load carrying and comfort.

The work presented here tries to analyze the effect of spring stiffness and Damping coefficient on the Seat Acceleration and Tire deflection and analysis by equation of motion using mathematical blocks available in Simulink.

S. J. Chikhale et al [1] analyzed that suspension model in Matlab-Simulink and MSc-Adams. Results for the analysis are compared for understanding the capability of the software to deal with the vibration problems.

P. Sathishkumar et al [2] discussed about the mathematical modeling and simulation of 2DOF quarter car model. The state space mathematical model is derived using Newton’s second law of motion and free body diagram concept. The performance of the system is determined by Matlab/Simulink.

Nikos E. Mastorakis et al [3] have tested the performance of a suspension damper using a FFT with the simulation environment under MATLAB/Simulink. The Simulink results and experimental results are compared and are similar in nature.

K. S. Patil [4] obtained a mathematical model for the passive and active suspension systems for quarter car model in their research paper. Comparison between Passive and Active Suspension for Quarter Car Model is done. Dynamic model for linear quarter car suspensions systems has been formulated and derived.

S. Segla [5] has optimized the performance of the passive suspension system and compared with the performances of active and semi-active suspensions. Mat lab is used for the optimization of the suspension parameters.

www.ijergs.org
2. Mathematical Model for Quarter Car

The equation of motion for 2DOF system is given as:

\[M_2 \ddot{Z}_2 + C(\dot{Z}_2 - \dot{Z}_1) + K(Z_2 - Z_1) = 0 \]
\[M_1 \ddot{Z}_1 + C(\dot{Z}_1 - \dot{Z}_2) + K(Z_1 - Z_2) + K_r(Z_1 - q) = 0 \]

Taking the Fourier transfer on both sides

\[Z_2(-\omega^2 m_2 + j\omega c + K) = Z_1(j\omega c + K) Z_1(-\omega^2 m_1 + j\omega c + K + K_r) = Z_2(j\omega c + K) + qK_r \]

For the purposes of design optimization, according to James' principle, the root mean square (RMS) of the sprung mass acceleration \(\ddot{Z}_2 \) can be expressed as follows,

Taking the amplitude ratio for amplitudes of sprung mass and road excitation

\[\frac{|Z_1|}{|q|} = \left[\frac{(1 - \lambda^2)^2 + 4\xi^2 \lambda^2}{\Delta} \right]^{1/2} \]

Where,

\[\Delta = (1 - (\omega/\omega_0)^2)(1 + \gamma - \frac{1}{\mu}(\omega/\omega_0)^2 - 1) + 4\xi^2 (\omega/\omega_0)^2 \left[\gamma - (\frac{1}{\mu} + 1)(\omega/\omega_0)^2 \right] \]

\[\gamma = \frac{K_r}{k}, \mu = \frac{m_2}{m_1}, \omega_0 = \sqrt{K/m_2}, \xi = \frac{C}{2\sqrt{m_2K}} \]

The amplitude ratio between sprung mass displacement, \(Z_2 \) and the road excitation, \(q \), is
The amplitude ratio between sprung mass acceleration, \(\ddot{Z}_2 \), and the road excitation, \(\ddot{q} \), is

\[
\left| \frac{\ddot{z}_2}{\ddot{q}} \right| = \gamma \sqrt{\frac{1 + 4\xi^2 \lambda^2}{\Delta}}^{1/2}
\]

The suspension working space is the allowable maximum suspension displacement. The suspension working space in response to the road displacement input is:

\[
\frac{f_d}{\dot{q}} = \frac{\gamma}{\omega} \lambda^2 \left[\frac{1}{\Delta} \right]^{1/2}
\]

The dynamic tire load is defined as \(F_d = K_r (z_1 - q) \), and also the static tire load is \(G = (m_1 + m_2)g = m_1(\mu + 1)g \) where \(g \) is gravitational acceleration. Thus the amplitude ratio between the relative dynamic tyre load, \(\frac{F_d}{G} \), and the road input, \(q \), becomes

\[
\frac{F_d}{G_q} = \frac{\gamma \omega}{g} \left[\frac{\lambda^2}{1 + \mu} + 4\xi^2 \lambda^2 \right] \left[\frac{1}{\Delta} \right]
\]
3. Simulink Model of Quarter Car

The simulink results are obtained by suspension parameters as follows:

Table no1. Fix Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>M₁</td>
<td>40 Kg</td>
</tr>
<tr>
<td>M₂</td>
<td>60 Kg</td>
</tr>
<tr>
<td>K₁</td>
<td>100000 N/m</td>
</tr>
</tbody>
</table>

Table no 2. Variable Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>K₂</td>
<td>18760(N/m)</td>
</tr>
<tr>
<td>C₂</td>
<td>900N-s/m</td>
</tr>
</tbody>
</table>
a. Plot for Seat Acceleration

Graph no 1. Seat Acceleration

b. Plot for Tire Deflection

Graph no 2. Tire Deflection

From both the graphs, we get the maximum and minimum values of the seat acceleration and TD as follows:

Table no 3. Observed Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Maximum Value</th>
<th>Minimum Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seat Acceleration(M/s²)</td>
<td>34.9176</td>
<td>-29.1136</td>
</tr>
<tr>
<td>Tire Deflection(m)</td>
<td>0.023</td>
<td>-0.0219</td>
</tr>
</tbody>
</table>

Now, optimization program was run using for the objective function:

Min (TD) and min (Seat Acceleration)
The obtained values for the design variables K & C are:

Table no 4. Optimized Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>K₂</td>
<td>12265 (N/m)</td>
</tr>
<tr>
<td>C₂</td>
<td>536 N·s/m</td>
</tr>
</tbody>
</table>

c. Plot for Seat Acceleration

Graph no 4. Seat Acceleration vs. Time

d. Plot for Tire Deflection

Graph no 5. Tire Deflection vs. Time
From both the graphs, we get the maximum and minimum values of the seat acceleration and TD as follows:

Table no 5. Maximum and Minimum values of the Seat Acceleration & TD

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Maximum Value</th>
<th>Minimum Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seat Acceleration(M/s²)</td>
<td>31.8604</td>
<td>-23.7734</td>
</tr>
<tr>
<td>Tire Deflection(m)</td>
<td>0.022</td>
<td>-0.0189</td>
</tr>
</tbody>
</table>

4. Results and Discussion

Table no 6. Results comparison of Optimized Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Classical Value</th>
<th>Optimized Value (Simulink Model)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seat Acceleration(m/s²)</td>
<td>34.9176</td>
<td>31.8604</td>
</tr>
<tr>
<td>Tire Deflection(m)</td>
<td>0.023</td>
<td>0.022</td>
</tr>
</tbody>
</table>

From Table No 6 we can compare the classical and simulink values and can observe that the Seat Acceleration has been decreased by 3.0572 m/s² and Tire Deflection by 0.001 m.

Thus we can see that the seat acceleration values are reduced by optimization. The ride comfort will be increased with the minimization of the Seat acceleration and tire deflection.

Conclusion
The simulation result shows considerable difference in linear passive sprung mass. As the results of analysis of quarter car passive suspension are quite similar because experimental model contains inherent nonlinear properties of suspension parameters, so it is necessary to consider the nonlinearities in suspension system for analysis of tire dynamic force. Hence form above we conclude that the analysis of suspension system we can use only theoretical (MATLAB Simulink) models instead of difficult experimental setup.

5. ACKNOWLEDGEMENT
We would like to thank our mentor Dr. Sudhir Deshmukh, Principal MGM’s JNEC for their valuable co-operation and support, also we wish to thanks Dr. M.S. Kadam, Head of Department and. All faculty members of Mechanical Engineering Department

REFERENCES:

[13] Sadhu Singh, Mechanical Vibrations and Noise Control