A Large Block Cipher Involving a Key Applied on Both the Sides of the Plain Text

Vivek Vardhan Bariki¹

¹Dept. of Computer Science & Engg., CMRTECHNICAL CAMPUS, Hyderabad, India

Abstract: In this paper, we have developed a block cipher by modifying the Hill cipher. In this, the plain text matrix P is multiplied on both the sides by the key matrix. Here, the size of the key is 512 bits and the size of the plain text is 2048 bits. As the procedure adopted here is an iterative one, and as no direct linear relation between the cipher text C and the plain text P can be obtained, the cipher cannot be broken by any cryptanalytic attack.

Keywords: Block Cipher, Modular arithmetic inverse, Plain text, Cipher text, Key.

1. Introduction

The study of the block ciphers, which was initiated several centuries back, gained considerable impetus in the last quarter of the last century. Noting that diffusion and confusion play a vital role in a block cipher, Feistel etal, [1 - 2] developed a block cipher, called Feistel cipher. In his analysis, he pointed out that, the strength of the cipher increases when the block size is more, the key size is more, and the number of rounds in the iteration is more.

The popular cipher DES [3], developed in 1977, has a 56 bit key and a 64 bit plain text. The variants of the DES are double DES, and triple DES. In double DES, the size of the plain text block is 64 bits and the size of the key is 112 bits. In the triple DES, the key is of the length 168 bits and the plain text block is of the size is 64 bits. At the beginning of the century, noting that 64 bit block size is a drawback in DES, Joan Daemen and Vincent Rijmen, have developed a new block cipher called

AES [4], wherein the block size of the plain text is 128 bits and key is of length 128,

192, or 256 bits. In the subsequent development, on modifying Hill cipher, several researchers [5 - 9], have developed various cryptographical algorithms wherein the length of the key and the size of the plain text block are quite significant.

In the present paper, our objective is to develop a block cipher wherein the key size and the block size are significantly large. Here, we use Gauss reduction method for obtaining the modular arithmetic inverse of a matrix. In what follows, we present the plan of the paper.

In section 2, we have discussed the development of the cipher. In section 3, we have illustrated the cipher by considering an example. In section 4, we have dealt with the cryptanalysis of the cipher. Finally, in section 5, we have presented the computations and arrived at the conclusions.

2. Development of the cipher

Consider a plain text P which can be represented in the form of a square matrix given by

$$P = [P_{ij}], \quad i = 1 \text{ to } n, j = 1 \text{ to } n,$$
 (2.1)

where each Pij is a decimal number which lies between 0 and 255.

Let us choose a key k consisting of a set of integers, which lie between 0 and

255. Let us generate a key matrix, denoted as K, given by

$$K = [K_{ij}], \quad i = 1 \text{ to } n, j = 1 \text{ to } n,$$
 (2.2)

where each K_{ij} is also an integer in the interval [0 - 255].

Let

$$C = [C_{ij}], \quad i = 1 \text{ to } n, j = 1 \text{ to } n$$
 (2.3)

be the corresponding cipher text matrix.

In the process of encryption, we have used an iterative procedure which includes the relations

 $P = (K P K) \mod 256,$ (2.4)

(2.5) and

 $\mathbf{P} = \mathbf{P} \oplus \mathbf{K}$

 $\mathbf{P} = \mathbf{Mix} \ (\mathbf{P}),$

(2.6) The relation (2.4) causes diffusion, while (2.5) and (2.6) lead to confusion. Thus, these three relations enhance the strength of the cipher.

Let us consider **Mix** (**P**). In this the decimal numbers in P are converted into their binary form. Then we have a matrix of size n x 8n, and this is given by

$$\begin{array}{c} (P_{111}, P_{112_{a,1112}} P_{118}, P_{121}, P_{122}, \dots, P_{128}, \dots, P_{1n1}, P_{1n2}, \dots, P_{1n8} \\ P_{211}, P_{212_{a,1112}} P_{218}, P_{221}, P_{222}, \dots, P_{228}, \dots, P_{2n1}, P_{2n2}, \dots, P_{2n8} \\ \dots \\ P_{n11}, P_{n12_{a,1112}} P_{n18}, P_{n21}, P_{n22}, \dots, P_{n28}, \dots, P_{nn1}, P_{nn2}, \dots, P_{nn8} \end{array}$$

Here, P111, P112, P118 are binary bits corresponding to P11. Similarly,

 $P_{ij1}, P_{ij2}, P_{ij2}, P_{ij8}$ are the binary bits representing P_{ij} .

The above matrix can be considered as a single string in a row wise manner. As the length of the string is $8n^2$, it is divided into n^2 substrings, wherein the length of each substring is 8 bits. If n^2 is divisible by 8, we focus our attention on the first 8 substrings. We place the first bits of these 8 binary substrings, in order, at one place and form a new binary substring. Similarly, we assemble the second 8 bits and form the second binary substring. Following the same procedure, we can get six more binary substrings in the same manner. Continuing in the same way, we exhaust all the binary substrings obtained from the plain text.

However, if n² is not divisible by 8, then we consider the remnant of the

string, and divide it into two halves. Then we mix these two halves by placing the first bit of the second half, just after the first bit of the first half, the second bit of the second half, next to the second bit of the first half, etc. Thus we get a new binary substring corresponding to the remaining string. This completes the process of mixing.

In order to perform the exclusive or operation in $P = P \oplus K$, we write the matrices, both P and K, in their binary form, and carryout the XOR operation between the corresponding binary bits.

In the process of decryption, the function IMix represents the reverse process of Mix.

In what follows, we present the algorithms for encryption, and decryption. We also provide an algorithm for finding the modular arithmetic inverse of a square matrix.

Algorithm for Encryption

1. Read n, P, K, r

2. for i = 1 to r

{

 $P = (K P K) \mod 256$

 $P = Mix (P) P = P \bigoplus K$

}

3. C = P

4. Write (C)

Algorithm for Decryption

1. Read n, C, K, r

2. K^{-1} = Inverse (K)

3. for i = 1 to r

{

 $\mathbf{C}=\mathbf{C}\oplus\mathbf{K}$

C = IMix(C)

 $C = (K^{-1} C K^{-1}) \mod 256$

}

4. P = C

5. Write (P)

Algorithm for Inverse (K)

// The arithmetic inverse (A^{-1}), and the determinant of the matrix (Δ) are obtained by Gauss reduction method.

- 1. A = K, N = 256
- 2. $A^{-1} = [A_{ji}] / \Delta$, i = 1 to n, j = 1 to n //A_{ji} are the cofactors of a_{ij}, where a_{ij} are elements of A, and Δ is the determinant of A
- 3. for i = 1 to n {

if $((i \Delta) \mod N = 1)$

d = i;

break;

}

4. $B = [d A_{ji}] \mod N$ // B is the modular arithmetic inverse of A

3. Illustration of the cipher

Let us consider the following plain text.

No country wants to bring in calamities to its own people. If the people do not have any respect for the country, then the Government has to take appropriate measures and take necessary action to keep the people in order. No country can excuse the erratic behaviour of the people, even though something undue happened to them in the past. Take the appropriate action in the light of this fact. Invite all the people to come into the fold of the Government. Try to persuade them as far as possible. Let us see!! (3.1)

Let us focus our attention on the first 256 characters of the above plain text which is given by

No country wants to bring in calamities to its own people. If the people do not have any respect for the country, then the Government has to take appropriate measures and take necessary action to keep the people in order. No country can excuse the erratic !! (3.2)

On using EBCDIC code, we get 26 numbers, corresponding to 256 characters.

Now on placing 16 numbers in each row, we get the plain text matrix P in the decimal

form

153 137 149 135 64 150 64 129 148 163 137 166 149 133 150 151 147 133 75 163 136 133 64 133 64 150 163 64 162 151 168 64 153 64 $\mathbf{P} =$ (3.3)133 149 136 133 150 64 153 150 153 137 163 133 64 129 153 150 64 146 133 133 167 164 162 133 64 163 136 133 64 133 153 153 129 163 137 131 64

Obviously, here the length of the plain text block is 16 x 16 x 8 (2048) bits.

Let us choose a key k consisting of 64 numbers. This can be written in the form of a matrix given by

	175	173	27	65	32	65	17	76	(3.4)
	232	84	72	69	32	185	69	82	(3.4)
	27	179	102	33	83	97	73	32	
Q =	65	84	143	69	105	153	213	163	
	184	28	49	5	69	31	166	109	
	208	185	77	234	207	171	71	80	
					-	-			

The length of the secret key (which is to be transmitted) is 512 bits. On using

this key, we can generate a new key K in the form

к =	Q	R					
	ls	U.)				

where $U = Q^{T}$, in which T denotes the transpose of a matrix, and R and S are obtained from Q and U as follows. On interchanging the 1st_w row and the 8th_w row of Q, the 2nd_w row and the 7th_w row of Q, etc., we get R. Similarly, we obtain S from U. Thus, we

have

32 85 117 254 165 87]
101 57 95 191 37 132
77 234 207 171 71 80
49 5 69 31 166 109
143 69 105 153 213 163
102 33 83 97 73 32
72 69 32 185 69 82
27 65 32 65 17 76 (3.6)
27 65 184 208 237 127
179 84 28 185 249 107
102 143 49 77 101 32
33 69 5 234 57 85
83 105 69 207 95 117
97 153 31 171 191 254
73 213 166 71 37 165
32 163 109 80 132 87

whose size is 16 x 16.

On using the algorithm for modular arithmetic inverse (See Section 2), we get

	251	24	106	200	158	133	226	83	167	67	140	200	10	73	96	177	
	189	50	239	168	171	96	93	45	253	21	6	20	58	97	122	2	
	167	129	255	47	0	60	68	133	57	42	124	111	233	10	229	62	
	252	3	168	207	100	111	0	6	93	115	162	210	132	123	13	244	
	55	187	60	254	50	101	174	15	19	101	152	140	246	118	90	5	
	5	75	51	226	243	127	150	253	239	137	52	104	219	178	175	4	
$K^{-1} =$	38	75	1	220	99	46	155	104	22	249	205	162	104	202	208	108	
	167	33	253	52	36	37	128	104	115	92	2	82	229	6	164	201	(3.7)
	83	226	133	158	200	106	24	251	177	96	73	10	200	140	67	167	
	45	93	96	171	168	239	50	189	2	122	97	58	20	6	21	253	
	133	68	60	0	47	255	129	167	62	229	10	233	111	124	42	57	
	6	0	111	100	207	168	3	252	244	13	123	132	210	162	115	93	
	15	174	101	50	254	60	187	55	5	90	118	246	140	152	101	19	
	253	150	127	243	226	51	75	5	4	175	178	219	104	52	137	239	
	104	155	46	99	220	1	75	38	108	208	202	104	162	205	249	22	
	104	128	37	36	52	253	33	167	201	164	6	229	82	2	92	115	

On using (3.6) and (3.7), it can be readily shown that

 $K K^{-1} \mod 256 = K^{-1} K \mod 256 = I.$

(3.8)

On applying the encryption algorithm, described in Section 2, we get the cipher text C in the form

105 26 128 194 116 195 213 18 232 47 143 128 195 243 130 47 127 163 221 85 156 98 203 168 C = 140218 189 223 (3.9)166 222 120 202 197 196 186 25 202 207 185 201 216 104 196 142 142 59 222 157 64 252 104 123 117 82 228 172 130 104 79 189 47

On using (3.7) and (3.9), and applying the decryption algorithm presented in section 2, we get the Plain text P.

This is the same as (3.3).

Let us now find out the avalanche effect. To this end, we focus our attention on the plain text (3.2), and modify the 88^{th} character 'y' to 'z'. Then the plain text changes only in one binary bit as the EBCDIC code of y is 168 and that of z is 169.

On using the encryption algorithm, we get the cipher text C corresponding to the modified plain text (wherein y is replaced by z) in the form

	119	213	181	74	20	56	48	122	209	55	60	43	150	252	154	247	
	224	97	64	47	160	153	76	194	250	98	160	49	221	74	225	63	
	117	169	215	90	103	102	47	62	163	210	63	242	30	153	218	163	
	22	87	232	166	71	179	220	230	215	250	255	67	156	48	120	241	
	236	60	224	27	162	28	74	49	158	99	206	97	220	119	32	120	
	251	31	248	20	146	64	117	76	35	59	35	181	119	58	110	10	
	227	102	247	97	16	73	247	64	165	41	60	249	187	251	47	221	
C =	223	219	51	108	15	23	227	118	244	106	52	46	253	228	137	209	(3.10)
	202	31	162	67	159	76	5	117	156	163	249	62	193	29	169	150	
	187	57	226	189	141	85	91	66	68	24	117	109	199	108	224	83	
	126	236	118	190	173	148	149	35	21	59	248	176	5	132	100	222	
	247	230	224	201	212	0	231	137	43	251	118	87	179	230	231	97	
	212	73	90	156	41	108	241	42	62	147	39	93	114	231	102	182	
	54	23	85	48	211	253	249	131	135	210	212	119	5	24	121	79	
	229	37	225	196	235	2	172	113	94	88	192	100	56	107	156	0	
	184	244	252	74	119	203	231	175	244	143	202	175	36	155	230	114	

On comparing (3.9) and (3.10), we find that the two cipher texts differ in 898 bits, out of 2048 bits, which is quite considerable. However, it may be mentioned here that, the impact of changing 1 bit is not that copious, as the size of the plain text is very large. Even then it is remarkable.

Now let us change the key K given in (3.6) by one binary bit. To this end, we replace the 60^{th} element 5 by 4. Then on using the original plain text given by (3.3),

we get C in the form

116 240 123 248 155 123 226 199 114 153 103 166 110 162 113 169 166 182 243 220 212 123 155 250 141 178 212 118 209 C = 150 224 - 91 126 163 214 163 (3.11)157 112 115 147 100 189 218 174 242 223 214 158 205 127 117 129 63 116 195 180 234 219 107 46 251

On comparing (3.9) and (3.11), we find that the cipher texts differ in 915 bits, out of 2048 bits

From the above analysis, we find that the avalanche effect is quite pronounced and shows very clearly that the

cipher is a strong one.

4. Cryptanalysis

In the literature of cryptography, it is well known that the different types of attacks for breaking a cipher are:

(1) Cipher text only attack, (2) Known plain text attack, (3) Chosen plain text attack, (4) Chosen cipher text attack.

In the first attack, the cipher text is known to us together with the algorithm. In this case, we can determine the plain text, only if the key can be found. As the key contains 64 decimal numbers, the key space is of size

 $2^{512} \simeq (10^3)^{51.2} = 10^{153.6}$

which is very large. Hence, the cipher cannot be broken by applying the brute force approach.

We know that, the Hill cipher [1] can be broken by the known plain text attack, as there is a direct linear relation between C and P. But in the present modification, as we have all nonlinear relations in the iterative scheme, the C can never be expressed in terms of P, thus P cannot be determined by any means in terms of other quantities. Hence, this cipher cannot be broken by the known plain text attack.

As there are three relations, which are typical in nature, in the iterative process for finding C, no special choice of either the plain text or the cipher text or both can be conceived to break the cipher.

5. Conclusions

In the present paper, we have developed a large block cipher by modifying the Hill cipher. In the case of the Hill cipher, it is governed by the single, linear relation

 $C = (K P) \mod 26$, (5.1) while in the present case, the cipher

is governed by an iterative scheme, which includes the relations

 $\mathbf{P} = (\mathbf{K} \mathbf{P} \mathbf{K}) \mod 256$, (5.2) $\mathbf{P} = \mathbf{Mix}(\mathbf{P}),$ (5.3) $\mathbf{P} = \mathbf{P} \oplus \mathbf{K}.$ (5.4)Further, it is followed by C = P(5.5)

and

In the case of the Hill cipher, we are able to break the cipher as there is a direct linear relation between C and P. On the other hand, in the case of the present cipher, as we cannot obtain a direct relation between C and P, this cipher cannot be broken by the known plain text attack.

By decomposing the entire plain text given by (3.1) into blocks, wherein each block is of size 256 characters, the corresponding cipher text can be obtained in the decimal form. The first block is already presented in (3.9) and the rest of the cipher text is given by

185	14	96	57	33	156	10	74	214	184	19	44	237	13	121	141
157	250	120	112	34	186	172	9	89	206	225	222	59	115	173	136
30	181	147	17	186	218	133	206	47	55	79	64	113	114	218	70
106	93	172	169	102	146	109	190	49	150	211	208	39	112	3	191
154	131	34	159	83	47	154	232	44	156	122	78	253	61	184	98
166	122	142	238	193	253	202	250	43	137	116	45	70	197	245	52
40	44	78	134	13	38	123	162	194	198	210	191	247	248	144	234
78	104	122	55	244	183	248	240	99	91	160	212	66	244	85	197
137	169	82	213	145	176	103	211	19	15	226	208	154	192	241	92
17	101	116	186	230	110	63	238	183	118	126	148	17	3	202	117
162	54	8	58	190	226	244	214	254	99	125	39	197	200	112	108
90	232	19	216	95	226	25	133	180	56	190	121	247	209	174	60
71	134	138	47	69	232	67	136	63	208	50	145	35	188	81	126
165	182	219	38	135	174	69	215	192	253	164	76	91	168	214	26
96	9	88	227	107	140	131	82	59	148	1	171	235	9	203	97
32	14	122	27	122	90	225	6	140	48	17	115	172	106	125	234

In this analysis, the length of the plain text block is 2048 bits and the length of the key is 512 bits. As the cryptanalysis clearly indicates, this cipher is a strong one and it cannot be broken by any cryptanalytic attack. This analysis can be extended to a block of any size by using the concept of interlacing [5]

REFERENCES:

- 1. Feistel H, "Cryptography and Computer Privacy", Scientific American, May1973.
- Feistel H, Notz W, Smith J, "Some Cryptographic Techniques for Machine-to- Machine Data Communications", Proceedings of the IEEE, Nov. 1975.
- 3. William Stallings, Cryptography and Network Security, Principles and Practice, Third Edition, Pearson, 2003.
- 4. Daemen J, Rijmen V, "Rijdael: The Advanced Encryption Standard", Dr. Dobb'sJournal, March 2001.
- 5. V. U. K. Sastry, V. Janaki, "On the Modular Arithmetic Inverse in the Cryptology of Hill Cipher", Proceedings of North American Technology and Business Conference, Sep. 2005, Canada.

- V. U. K. Sastry, S. Udaya Kumar, A. Vinaya Babu, "A Large Block Cipher using Modular Arithmetic Inverse of a Key Matrix and Mixing of the Key Matrix and the Plaintext", Journal of Computer Science 2 (9), 698 – 703, 2006.
- V. U. K. Sastry, V. Janaki, "A Block Cipher Using Linear Congruences", Journal of Computer Science 3(7), 556 561, 2007.
- V. U. K. Sastry, V. Janaki, "A Modified Hill Cipher with Multiple Keys", International Journal of Computational Science, Vol. 2, No. 6, 815 – 826, Dec.2008.
- 9. V. U. K. Sastry, D. S. R. Murthy, S. Durga Bhavani, "A Block Cipher Involving a Key Applied on Both the Sides of the Plain Text", Sent for publication.