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Abstract— Selection of an appropriate neuron model for neuroscience studies is a crucial task for researchers.   Some of the neuron 

models are too simple to exhibit the complex dynamics of the neuron and others are very complex and cannot be used in a network as 

they result in computationally expensive analysis.  Study of chaotic behavior and bursting phenomenon of biophysical neuron models 

is an important step towards analyzing the overall functioning of the brain.  In-depth analysis of bursting and chaotic behavior of 

FitzHugh- Rinzel neuron model has been made in this paper work. 
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INTRODUCTION 

The brain is one of the most complex objects in the universe.  Although many  attempts have  been made  to  investigate  and  model 

the  functionalities of the  brain,  the  exact  working of it is still  unknown.   The research in the field of computational neuroscience is 

aimed to know about the brain with more intricacy and to develop more realistic models of its constituents. These models are 

important tools for characterizing what nervous systems do, determining how they function, and understanding why they operate in 

particular ways.  As most of these models are dynamical in nature, theory of dynamical systems is useful in gaining new insights into 

the operation of nervous system.  The primary step for understanding the brain dynamics is to understand the dynamical behavior of 

mathematical models of individual neurons.  The most important part of this study is the bifurcation analysis of the neurons and their 

networks.   Certain bifurcations in the membrane potential result in neural excitability, spiking, and bursting.  Revealing these 

bifurcations in neuron models helps in knowing various functions of the brain.   Such types of studies include the analysis of chaotic 

behavior of neural systems.  These neural systems can be individual neurons or their interconnections. The ongoing research in this 

regard is to examine the role of chaos in learning.  Exploring dynamics of biological neuron models is helpful not only in neuroscience 

studies but also in neural network applications. 

 

In literature, different dynamical models are proposed to represent bio- physical activities of neurons.  Commonly used models for the 

study of spiking and bursting behaviors of neurons include integrate-and-fire model and its variants [5, 6, 18, 30], FitzHugh-Nagumo 

model [7], Hindmarsh-Rose model [15, 10], Hodgkin-Huxley model [13, 11] and Morris-Lecar model [25].  A short review of these 

models is provided by Rinzel in [26, 27, 28]. An excel- lent comparison of more than  twenty neurocomputational properties  of the 

most popular  spiking and bursting  models have been made in [16]. Bifurcation phenomena in individual neuron models including the 

Hodgkin-Huxley, Morris-Lecar and FitzHugh-Nagumo models have been investigated in the literature [15, 27, 4]. Rinzel and 

Ermentrout [27] studied bifurcations in the Morris-Lecar model by treating the externally applied direct current as a bifurcation 

parameter. 

From various experiments, it has been well established that neuronal activities show many characteristics of chaotic behavior.   Some 

researchers believe that this  sort  of behavior  is necessary  for the  brain  to engage in continual learning – categorizing a novel input  

into a novel category  rather than  trying  to fit it into an existing category [29, 9, 1]. Freeman developed a mathematical model for 

EEG signals generated by the olfactory system in rabbits [9]. He suggested that the learning and recognition of novel odors, as well as 

the recall of familiar odors can be explained through chaotic dynamics of the olfactory cortex.   Attempts have been made  to represent 

the  neurodynamics  of biological neural  networks  in terms  of artificial neural  network type  of structures  with  some extent  to  

their  intricacies.   Chaotic dynamics based neural networks have also been proposed to capture some of the characteristics of learning 

in the brain [2].  Nonlinear dynamics of various neuronal models has been investigated in [24, 19, 20].  Chaos in firing rate  recurrent 

neural network models have been investigated in [22]. The effect of synaptic bombardment has been explored in the dynamics of 

various biological neuron models [21]. Nonlinear dynamical analysis on coupled modified FitzHugh-Nagumo neuron model has also 

been performed [23]. 
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The brain  takes  the  incoming sensory data  as input,  encodes them into various  biophysical  variables  and  performs  a  number  of 

computations on these variables to extract  relevant features from the input.  Biophysical mechanisms responsible for these 

computations are dynamical in nature and lead to various types of learning.  Therefore, there are two closely related issues in 

computational neuroscience – nonlinear dynamics of different constituents of nervous system and the roles of various biophysical 

activities in learning. There have been many evidences in literature to experimentally explore the chaotic behavior of neuronal 

activities.  Study of chaos and other phenomena of nonlinear dynamics in various levels of brain modeling can provide a significant 

help in investigating the learning mechanism.  

Nonlinear dynamical analysis of FitzHugh-Rinzel neuron models is carried out to investigate different bifurcations and chaos.  The 

same analysis has been carried out also for a firing-rate recurrent neural network of three neurons and it is observed that its dynamical 

behavior becomes chaotic at some set of parametric values.  This study supports the role of chaos in continual learning – categorizing 

a novel input into a novel category rather than trying to fit it into an existent category. 

NEURON MODELS 

Neurons or nerve cells are the fundamental building blocks of the nervous system.  These cells form the basis of the brain.  Therefore, 

a sufficient in-depth knowledge of neurons is necessary for study of the brain.   A typical human brain consists of approximately 100 

billion neurons, each neuron having at least 10,000 connections with other neurons.  A typical neuron has three major regions: the 

soma, the axon and the dendrites.  Dendrites form a dendritic tree which is a very fine bush of thin fibers around body of the neuron.   

Dendrites receive information from neurons through axons– long fibers that serve as transmission lines. An axon is a long cylindrical 

connection that carries impulses from the neuron.  The end part of an axon splits into a fine arborization which terminates in a small 

end-bulb almost touching the dendrites of neighboring neurons.  The connections between the ends of axons and the dendrites or cell 

bodies of other neurons are specialized structures called synapses.  Electrochemical signals flow in neurons, originating at the 

dendrites or cell body in response to stimulation from other neurons and propagating along axon branches which terminate on the 

dendrites or cell bodies of thousands of other neurons [3]. 
 

Various mathematical models for biological neurons have been proposed in literature [7, 15, 13, 25, 26, 16] to represent their 

biological activities. As it  is generally  believed that neurons  communicate  with  each other  via action  potentials, almost  all of 

these  models represent  neuronal  behavior in terms  of membrane  potential  and  action potential.  Some most popular models are 

Hodgkin-Huxley [13], integrate-and-fire [18], FitzHugh-Nagumo (FHN) [7], FitzHugh-Rinzel (FHR) [26], Morris-Lecar [25], Wilson-

Cowan [31, 14], Izhikevich [16] and Hindmarsh-Rose [10] models.  These neuron models represent the characteristics of the responses 

of different types of real neurons with different levels of biological plausibility. 

 

Some widely used models of spiking and bursting neurons [7, 15, 13, 25, 26, 16] are reviewed in the remaining part of this section.  

These models can be expressed in the form of ordinary differential equations (ODE).  It is discussed whether these models have 

biophysically meaningful and measurable parameters and can exhibit bursting and chaotic activities. 

FITZHUGH-RINZEL MODEL  

Dendrites receive electrical signals through dendritic spines that consist of a spherical head and a stem connected to the dendrite.   

FitzHugh-Rinzel (FHR) model describes the dynamics of dendritic spines [28]. This model shows how the potential difference 

between the spine head and its surrounding medium vacillates between the silent phase and the active phase  or bursting.   The system 

switches phases depending on the strength of the slowly changing drift current in the dendrite.  This model is a modification of the 

FHN model and incorporates a third state variable to model the bursting behavior of neurons.  This model is represented by a set of 

three coupled nonlinear differential equations.  It takes the following form 
 
  

  
   

 3

3
                                      (1) 

  

  
                                                (2) 

  

  
                                                          (3) 

Variable  v represents  the  potential  difference between  the  dendritic  spine head  and  its surrounding  medium,  w is recovery 

variable  and  y represents the slowly moving current in the dendrite.  In this model, v and w together make up a fast subsystem 

relative to y.  
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NONLINEAR DYNAMICS OF FITZHUGH-RINZEL MODEL  

FitzHugh-Rinzel (FHR) model is a three dimensional model derived from the FHN model to incorporate bursting phenomena of nerve 

cells.  It takes the following form  
 

  

  
   

 3

3
                                                 (4) 

  

  
                                                                                             (5) 

  

  
                                                                               (6) 

 

This model exhibits spiking as well as bursting phenomenon of the neuron.   Figure  1 shows time  response  and  phase  portrait of 

this  system  at I = 0.3125, a = 0.7, b = 0.8, c = −0.775, d = 1, δ = 0.08, and µ = 0.0001. It is observed that the model exhibits 

bursting at these values of parameters. 

 

(a) Time Response                                                                      (b) Phase Portrait 

 
Figure  1:  Time  response  and  phase  portrait of FHR  model at  I = 0.3125, a = 0.7, b = 0.8, c = −0.775, d = 1, δ = 0.08 and  µ = 

0.0001.  The model exhibits bursting at these values of parameters. 

BIFURCATION ANALYSIS OF FITZHUGH-RINZEL (FHR) MODEL 

Bifurcation analysis of FHR model has been carried out with respect to different parameters. 

BIFURCATION ANALYSIS WITH µ AS A BIFURCATION PARAMETER 

Jacobian matrix, J of this model at the equilibrium point (ve, we, ye) for I = 0.3125, a = 0.7, b = 0.8, c = −0.775, d = 1 and δ = 0.08, in 

terms of the bifurcation parameter µ is gives as 
 

𝐽  [

1    
  1 1

2

25
 

8

125
0

  0   

] 

 

Eigenvalues of the linearized system are computed by solving |λI − J | = 0 for λ.  Thus, eigenvalues λ1, λ2, and λ3 are the roots of 

following characteristic equation of the linearized FHR system. 
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This characteristic equation can be written as 
 

λ3   Aλ2   Bλ   C   0 
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where 

 

𝐴    
117

125
   

  

 

𝐵  
8

125
  

2

125
   

   
8
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𝐶  
2
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8
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Applying Routh-Hurwitz stability criteria, we get the following array 

 

𝜆3                   1 𝐵

𝜆2                 𝐴 𝐶

𝜆1               
𝐴𝐵  𝐶

𝐴
0

 

𝜆0                     𝐶       0 
 

 
Figure 2:  Plots of A, C and C − AB with respect to µ.  A, B, and C are the coefficients of the characteristic equation of FHR model.   C 

− AB is always negative for all values of bifurcation parameter µ.  A and C crosses zero value at µ = −0.13 and µ = −0.02, 

respectively.  Therefore, Hopf bifurcation takes place at these values of µ. 

 

It is found that there are possibilities of Hopf bifurcations at those values of parameter µ for which A = 0, C = 0 or C − AB = 0.  At 

the equilibrium point (−1.0292, −0.4116, 0.2542), C − AB, in terms of µ comes out to be 

 

C − AB = −1.1233µ
2
 − 0.0744µ − 0.0103 

 

Thus, C − AB is always negative for all values of bifurcation parameter µ. Plots of A, C, and C − AB with respect to µ are shown in 

Figure 2.  It  is clear from this  figure that A and  C  crosses zero value  at  µ = −0.02  and µ = −0.13 and therefore  Hopf bifurcation  

takes  place at  these values of µ. However, these values do not lie in the practical range of µ. To  reveal  the  bifurcation  phenomenon  

in the  practical  range  of µ, the bifurcation  diagram  and  largest  Lyapunov  exponent  are plotted.   Figure 3 shows the bifurcation 

diagram with µ as bifurcation parameter.   Plot of largest Lyapunov exponent with respect to µ is shown in Figure 4.  Positiveness of 

the largest Lyapunov exponent for some values of µ indicates its chaotic behavior which is also observed in the bifurcation diagram.   

Time response and phase portrait are plotted for µ = 0.0002 in Figures 5(a) and 5(b), respectively.  These plots show the chaotic 

behavior. 
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Figure 3:  Bifurcation diagram of FHR model with µ as bifurcation parameter. This bifurcation diagram shows that the minimum value 

of µ for either spiking or bursting or chaotic response is of the order of 1 × 10
−4

. y-axis of this plot shows the values of variable v at 

different time instants after  transients. 

 

 
Figure 4:  Plot of the largest Lyapunov exponent of FHR model with respect to µ.  It is positive for 1.4 × 10

−4
 < µ < 2.2 × 10

−4
 and 

3.4 × 10
−4

 < µ < 3.43 × 10
−4

.  Therefore, the model exhibits chaotic response for these ranges of µ. 

BIFURCATION ANALYSIS WITH I AS A BIFURCATION PARAMETER 

Bifurcation analysis, with current (I) as a bifurcation parameter, is carried out in order to investigate the effect of stimulus on the 

spiking behavior of FHR model. For this, the Jacobian matrix, J of this model at the equilibrium point (ve, we, ye) for µ = 0.0001, a = 

0.7, b = 0.8, c = −0.775, d = 1, and δ = 0.08, in terms of the bifurcation parameter I is given as 
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1
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1
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For the above values of parameters, there exists one and only one equilibrium point for all values of I. Figure 6 shows the location of 

this equilibrium point as a function of I. Characteristic equation, in terms of ve, comes out to be 
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𝜎   2475  1500  25√12926  11880  3600   

 

 
(a) Time Response                               (b) Phase Portrait 

 

Figure 5:  Time response and phase portrait of FHR model for µ = 0.0002.  The model exhibits chaotic response for this value of µ. 

 

 

 
Figure 6: Locus of equilibrium point of FHR model as a function of I.  There is one equilibrium point for every value of I. 

 

This characteristic equation can be written as 

 

λ
3
 + Aλ

2
 + Bλ + C = 0 

  

where 
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Figure 7: Real parts of eigenvalues of the FHR model.  This plot indicates the values of I for which the real parts of eigenvalues 

vanish. 

 

 

 
Figure 8: Imaginary parts of eigenvalues of the FHR model. This plot indicates the range of I for which there exist complex 

eigenvalues. 

 

Routh-Hurwitz stability  criterion  shows that  there  are possibilities  of Hopf bifurcations  at  those values of parameter I for which A 

= 0, C = 0 or C − AB = 0.  First condition, i.e., A = 0, is equivalent to ve  = 0.2532 and the second condition,  i.e., C = 0, will not  be 

satisfied for any real value of ve. Third condition, i.e., C − AB = 0, can be expressed as 

 

−0.641  
4  + 0.584  

2 + 0.015 = 0 

 

http://www.ijergs.org/


International Journal of Engineering Research and General Science Volume 4, Issue 3, May-June, 2016                                                                                   
ISSN 2091-2730 

180                                                                                                   www.ijergs.org  

 
Figure 9:  Bifurcation diagram of FHR model with I as a bifurcation parameter.  Qualitative change in the dynamical behavior of the 

model takes place as the parameter I is changed.   The  dynamics  changes  from converging  to periodic  and  again  from periodic  to 

converging as I is increased.  y-axis of this plot shows the values of variable  v at  different time instants after  transients. 

 

 
(a) Time Response                                                                               (b) Phase Portrait 

 

Figure 10:  Time response and phase portrait of FHR model for I = 0.1.   The model exhibits a fixed-point attractor for this value of I. 

 

 
(a) Time Response                                                                        (b) Phase Portrait 

 

Figure 11:  Time response and phase portrait of FHR model for I = 0.15.   The model exhibits a limit-cycle attractor for this value of I. 
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(a) Time Response                                                                        (b) Phase Portrait 

 

Figure 12:  Time response and phase portrait of FHR model for I = 3.1.   The model exhibits a limit-cycle attractor for this value of I. 

 

 
(a) Time Response                                                                        (b) Phase Portrait 

 

Figure 13:  Time response and phase portrait of FHR model for I = 3.2.   The model exhibits a fixed-point attractor for this value of I. 

 

 
Figure 14: Plot of the largest Lyapunov exponent with respect to the bifurcation parameter I.  The largest Lyapunov exponent is 

positive for 0.8 < I < 1.2.  Therefore, the model exhibits chaotic behavior in this range of I. 

 

This equation has four roots among which two are real and are ve = ±0.9675. Thus,  Hopf bifurcation  takes  place  at  three  values  of 

I corresponding  to three  values  of ve,  i.e.,  ve   = −0.9675, 0.2532, 0.9675.   The values of I at which Hopf bifurcation takes place, 

are calculated by solving Equation 8 for above mentioned values of ve. It is found that there are possibilities for Hopf bifurcation to 
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take place for I = 0.1387, 1.9719, 3.1612. Eigenvalues at these values of I are calculated by solving the characteristic equation and are 

given in Table 1. There is no Hopf bifurcation for I = 1.9719 as there is no pair of complex conjugate eigenvalues passing jω-axis for 

this value of I. Thus, Hopf bifurcation takes place for I = 0.1387 and I = 3.1612. Real and imaginary parts  of eigenvalues of the  FHR  

model linearized  at  its equilibrium  points are plotted  against  I in Figures 7 and 8, respectively.  Figure 8 indicates the range of I for 

which there are complex eigenvalues.  There is no possibility of Hopf bifurcation at other values of I.   Figure 7 indicates those values 

of I at which real part vanishes and its rate of change with respect to I is nonzero. It is observed from these plots that real part of 

eigenvalues vanishes without its imaginary part becoming zero at I = 0.1387 and I = 3.1612. It indicates the Hopf bifurcation at these 

points.  These points are observed with a poor accuracy in the bifurcation diagram of Figure 9.  Possible reasons of this inaccuracy are 

related to the limitations of numerical methods used for integration. Presence of Hopf bifurcation at I = 0.1387 as well as I = 3.1612 is 

verified by plotting time responses and phase portraits for I just before and just after these values.  Figures 10, 11, 12, and 13 represent 

time responses and phase portraits for I = 0.1, 0.15, 3.1, and 3.2 respectively.  It is observed that the response exhibits a fixed-point 

attractor at I = 0.1 and 3.2 while it is oscillatory at I = 0.15 and 3.1. Therefore, I = 0.1387 and I = 3.1612 are two Hopf bifurcation 

points. Lyapunov exponent analysis is performed for investigation of presence of chaos in FHR model when I is a bifurcation 

parameter.  Largest Lyapunov exponent is plotted in Figure 14, against the bifurcation parameter I in order to detect the presence of 

chaotic attractors in this model. It is observed that the largest Lyapunov exponent is positive for some values of I.  For these values of 

I, response of the FHR model is chaotic.  Figure 15 represents time responses and phase portrait for I = 0.9.  It is observed that the 

response exhibits chaos for this value of I. 

 

 
(a) Time Response                                                                        (b) Phase Portrait 

 

Figure 15:  Time response and phase portrait of FHR model for I = 0.9.   The model exhibits chaotic behavior for this value of I. 

 

Table 1: Equilibrium points and eigenvalues for three different values of I 

I ve we ye λ1 λ2 λ3 

0.1387 

1.9719 

3.1612 

-0.9675 

0.2532 

0.9675 

-0.3344 

1.1915 

2.0843 

0.1925 

-1.0282 

-1.7425 

-0.0002 

0.8481 

-0.0002 

0 - j 0.2757 

-0.0004 

0 - j 0.2757 

0 + j 0.2757 

0.0241 

0 + j 0.2757 

CONCLUSIONS  

One of the most effective approaches for the study of the nervous system is to look at its constituents as nonlinear dynamical systems.   

Dynamical analysis has been carried out on FHR neuron models. Eigenvalue analysis is performed for the detection of Hopf 

bifurcation and Lyapunov exponents are plotted for the study of chaos.  Lyapunov exponent and eigenvalue analysis show that 

FitzHugh-Rinzel neuron model exhibits fixed points, limit cycles as well as chaotic (strange) attractors at various values of 

parameters. This study identifies FitzHugh-Rinzel neuron model as an appropriate model for investigating roles of bursting and chaos 

in continual learning.  This research work can be extended in various directions. Dynamical analysis in other neuron models (including 

stochastic neuron models) and their interconnections can be performed in order to study various characteristics of brain signals (e.g., 

bursting, chaos, stochastic resonance, and threshold variability). 
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