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1. Introduction                       

     The degree of approximation of a function    belonging to various classes using different Summability method has been 

determined by many Mathematician ,Chandra [3] find  the degree of  approximation  of  function  by Norlund transform .Later on 

Mahapatra and Chandra [4] obtain the degree of approximation in Holder  metric using matrix transform .In sequal singh et.al. [ 7 ] 

obtain the error bound of periodic function  in Holder metric  again Mishra et.al. gave  the  generalization of  result of  Singh et.al. In  

this paper  we find  the  degree of approximation of function   ̃       by   (E,1)  (C,1) means in holder metric.  

2. Definition 

For a     - periodic signal      periodic  integrable in the sense of Lebesgue then  the Fourier series of       is given by  

        
  

 
 ∑                   

                           …….(2.1) 

The conjugate series of Fourier series (2.1)  is given by  

  ∑                   
               ……(2.2) 

Let        and          denote  two given modulai of continuity such that  

        
 

   (     )                                           ……..(2.3) 

Let       denote the Banach Space  of all  2  - periodic continuous function  defined on [    ] under  sub-norm the space     

[0,2 ]           includes the space       For some positive constant  k  the function space      is defined by  

               {       |         |     |   | }                                                              ……(2.4) 

With norm ‖ ‖      defined by 

                             ‖ ‖       ‖ ‖       
   
        

                                                                          ……….(2.5) 

Where         and          are increasing function  of        and  

  ‖ ‖           
   

      
 |    |   and            

        
|         |

   |   |    
     x                …………(2.6) 

 

with the understanding that                         If  there exists  positive constant         and     such  that       |   |  

 |   |         and        |   |       |   |                   than the space  
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              {       |         |   |   |         }                                 ………(2.7) 

Is Banach space and metric induced by norm  ‖ ‖     and       is said to be Holder metric clearly        is  a Banach space   which 

decreases as     increases that is 

             for                       ……..(2.8)  

An infinite series∑   
 
    is said to be  (C,1)  summable to s  if  

          
 

     
∑   

 
                         ……..(2.9) 

The  (E,1)  transform  is  defined  by   

          
 

  
∑ (

 
 
)   

 
                        …….(2.10) 

The (E,1)  transform of  (C,1)  transform defined   (     
   is given by 

       
  

 

  
∑ (

 
 
) 

     
                           ……(2.11) 

 

 3.Known Results  

Singh and Mahajan [7  ]  established the following theorem to error bound of signal passing through (C,1)(E,1) transform. 

Theorem 1 – Let        defined (2.4) be  such that 

 ∫
    

  

 

 
    {    }                                                    …….(3.1) 

 

 ∫         {     }
 

 
                                                      ………(3.2) 

Then for             and            we have 

‖  
               ‖

  
  2(         

 

   
 )

  
 

 
3                                    ……..(3.3) 

Theorem 2 – Consider w(t) defined (2.4) and for          and            we have 

‖  
             ‖

  
  {(  

 

   
 )

  
 
 

         ∑  (
 

   
)

   

   

   
 
 } 

               

               

     ………(3.4) 

In sequal Mishra and Khatri  [11 ] gave the generalized  result of above  theorem . They proved the following . 

Theorem 3 – Let        defined (2.4) be  such that 

 ∫
    

  

 

 
    {    }                                                   
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 ∫         {     }
 

 
                       

Let  Np  be the Norlund summability matrix  generated by the non –negative {Pn} such that   (n+1)pn = o(Pn)              

Then for    ̅                        we have  

‖  
        ̅   ‖    {

  |   | 
 
 

   |   | 
           

 

 (        (
 

   
))

  
 

 
}      ……..(3.5) 

And  if  w(t) satisfies (3.1)  then for      ̅                    we have 

‖  
        ̅   ‖    {

  |   | 
 
 

   |   | 
(          

 

   
 )

  
 

 
 ((

 

   
)∑   

   (
 

   
))

  
 

 
}  

                                                                                                                                                    s  …….(3.6) 

4 .Main Theorem  

In this  paper  we have to prove  a theorem on the degree of approximation of a function f(x) conjugate to a   - periodic function f 

belonging to    ̅         class by  (E,1) (C,1) mean of conjugate series of its Fourier series. 

Theorem 1 – Let        satisfy the following condition 

 ∫
    

  

 

 
    {    }                                                     …….(4.1) 

 

 ∫         {     }
 

 
                                                      ………(4.2) 

Then for    ̅                        we have  

‖  
         ̅  ‖    {

  |   | 
 
 

   |   | 
           

 
 .        (

 

   
)/

  
 
 

} 

 

                      ……….(4.3) 

5 Lemma 

In order to prove our main result ,we require the following lemma. 

Lemma 1 -  For  0    
 

   
        

̅̅̅̅ (t) = o (
 

 
)                                                   ………(5.1) 

Proof -  -  For  0    
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Lemma 2 -  For  
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Proof -   For  
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.                                              
 

      
  ∑ (

 
 
)

 

   

 
    

            (
 

       
) 

Lemma 3 – If w(t) satisfies (4.1) and (4.2)  then   

       ∫            (     )                        

 
              ……(5.3) 

Lemma 4 – If                                  then for     ̅         we get 

  |           |       |   |                                                                          …….(5.4) 

  |           |       (| |)                      …….(5.5) 

6. Proof of  Theorem 

Let   ̅      denote the partial sum of series  ∑                   
   . Then we have 

  ̅      ̅   
 

  
∫      

   (  
 

 
) 

   (
 

 
)

 

 
                ….(6.1) 

The (C,1) mean of    ̅       is given by  

  
  ̅̅ ̅̅ ̅̅  ̅    

 

       
∫

     

   (
 

 
)
∑    (  

 

 
)      

   
 

 
      …….(6.2) 

Now (E,1) (C,1)  transform   of    ̅      is denoted by   
   we can write as 

  
        ̅    

 

     
∑ 0(
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                   ∫  
 

  
 ̅              …..(6.3) 
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Where   ̅     
 

     
∑ 2(

 
 
) (

 

   
)∑

   (  
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                                    …(6.4) 

          |           |  ∫ |           | ̅      
 

 
 

                =[∫  ∫  
 
 

   

 

   
 

] |           | ̅       

      =        (Say)        ….(6.5) 

Using (5.5) and (5.1) assume that w(t) satisfies (4.1) and (4.2); we get  

 

   ∫ |           | ̅      

 
   

 

 

                                                           =  ∫                
 

   
 

 

         =              (
 

   
)    ….(6.6) 

Using (5.5) and (5.2) assume that w(t) satisfies (4.1) and (4.2); we get  

   

     

   ∫|           | ̅      

 

 
   

 

                                                           =   (
 

   
) ∫                

 
 

   

 

         =              (
 

   
)    ….(6.7) 

Now using (5.4) and (5.1) we get 

     

   ∫ |           | ̅      

 
   

 

 

         =     |   | ∫            
 

   
 

 

         =    |   |             

 

Again  using (5.4) and  (5.2) we get 
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   ∫|           | ̅      
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Using the fact that we can write     
  

 

     

 

               

Combining(6.6) and(6.8) we get   
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    |   |            
 

 /                  ……(6.10) 

Combining(6.7) and(6.9) we get   

    .*           (
 

   
)+

  
 

    |   |   
 

 /                   ……(6.11) 

Now  from (2.7),(6.10) and (6.11) we have  
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Since    ‖     ‖  
   

      
 |  

         ̅  |      ….(6.13) 

From (6.6) and (6.7) we get  

‖     ‖   (           (
 

   
))           …..(6.14) 

Combining  (6.12) and (6.14)  we get 
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This complete the proof of  theorem.    
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