Some Fixed Point Results For Multivalued Operators In Vector Valued Spaces

Kumari Sarita, Mamta Kamra, Renu Chugh
mkhaneja15@gmail.com

Abstract

The aim of this paper is to prove some fixed point theorems for multivalued operators in E-b-metric space which is a Riesz space valued b-metric space.

Keywords : b-metric space, contraction mapping theorem, dedekind complete, E-b-metric space, multivalued operator, Riesz space, vector metric space.

Introduction : F. Riesz [7] introduced the concept of Riesz space. For a more extensive treatment of the theory of Riesz space we refer C. D. Aliprantis and K. C. Border [1], W. A. J.Luxemburg and A.C. Zannen [7].

Riesz space (or vector lattice) is an ordered vector space and at the same time a lattice also. Let E be a Riesz space with the positive cone $E_{+}=\{x \in E: x \geq 0\}$ for an element $x \in E$, the absolute value $|x|$, the positive part x^{+}, the negative part x^{-}are defined as $|x|=x \vee(-x), x^{+}=x \vee 0, x^{-}=(-x) \vee 0$ respectively.
If every non-empty subset of E which is bounded above has a supremum, then E is called Dedekind complete or order complete. The Riesz space E is said to be Archimedean if $\frac{1}{\mathrm{n}} \mathrm{a} \downarrow 0$ holds for every $\mathrm{a} \in \mathrm{E}_{+}$.
Example 1 ([1]). Let $R^{n}(n \geq 1)$ be the real linear space of all real n-tuples $x=\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, y_{2}, y_{3}, \ldots \ldots, y_{n}\right)$ with coordinatewise addition and multiplication by real numbers. If we define that $x \leq y$ means that $x_{k} \leq y_{k}$ holds for $1 \leq k \leq n$, then R^{n} is a Riesz space with respect to this partial ordering.
 $\left(a_{n}\right)$ in E satisfying $a_{n} \downarrow 0$ and $\left|b_{n}-b\right| \leq a_{n}$ for all n, written as $b_{n} \xrightarrow{0}$ b or o.lim $b_{n}=b$.
Definition 1.2 ([1]). A sequence (b_{n}) is said to be order Cauchy (o-Cauchy) if there exists a sequence (a_{n}) in E such that $a_{n} \downarrow 0$ and $\mid b_{n}$ $-b_{n+p} \mid \leq a_{n}$ holds for all n and p.
Definition 1.3 ([1]). A Riesz space E is said to be o-Cauchy complete if every o-Cauchy sequence is o-convergent.
If range space of a metric space is Riesz space then it becomes a vector metric space.
Definition 1.4 ([2]). Let X be a non-empty set and E be a Riesz space. Then function $d: X \times X \rightarrow E$ is said to be a vector metric (or E -metric) if it satisfies the following properties :
(a) $\mathrm{d}(\mathrm{x}, \mathrm{y})=0$ if and only if $\mathrm{x}=\mathrm{y}$
(b) $\quad \mathrm{d}(\mathrm{x}, \mathrm{y}) \leq \mathrm{d}(\mathrm{x}, \mathrm{z})+\mathrm{d}(\mathrm{y}, \mathrm{z})$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$.

Also the triple ($\mathrm{X}, \mathrm{d}, \mathrm{E}$) is said to be a vector metric space. Vector metric space is generalization of metric space. For arbitrary elements x, y, z, w of a vector metric space, the following statements are satisfied :
(i)
$0 \leq \mathrm{d}(\mathrm{x}, \mathrm{y})$
(ii) $d(x, y)=d(y, x)$
(iii) $|d(x, z)-d(y, z)| \leq d(x, y)$
(iv) $\quad|d(x, z)-d(y, w)| \leq d(x, y)+d(z, w)$

Example 2 ([2]). A Riesz space is a vector metric space $d: E \times E \rightarrow E$ defined by $d(x, y)=|x-y|$. This vector metric is said to be the absolute valued metric on E.

Definition 1.5 ([2]). A sequence $\left(\mathrm{X}_{\mathrm{n}}\right)$ in a vector metric space ($\mathrm{X}, \mathrm{d}, \mathrm{E}$) vectorial converges (E -converges) to some $\mathrm{x} \in \mathrm{E}$, written as $X_{n} \xrightarrow{\text { d.E }} X$ if there is a sequence $\left(a_{n}\right)$ in E satisfying $a_{n} \downarrow 0$ and $d\left(x_{n}, x\right) \leq a_{n}$ for all n.
Definition 1.6 ([2]). A sequence $\left(x_{n}\right)$ is called E-cauchy sequence whenever there exists a sequence $\left(a_{n}\right)$ in E such that $a_{n} \downarrow 0$ and $d\left(x_{n}\right.$, $\left.x_{n+p}\right) \leq a_{n}$ holds for all n and p.
Definition 1.7 ([3]). A vector metric space X is called E -complete if each E -cauchy sequence in X, E converges to a limit in X .
For more details and results regarding vector metric spaces we refer to [3], [5].
When $\mathrm{E}=\mathrm{R}$, the concepts of vectorial convergence and metric convergence, E -cauchy sequence and Cauchy sequence in metric are same.

When also $\mathrm{X}=\mathrm{E}$ and d is the absolute valued vector metric on X , then the concept of vectorial convergence and convergence in order are the same.
I.A. Bakhtin [14] defined the concept of b-metric space in 1989.

Definition 1.8 ([6]) : Let X be a non-empty set and let $s \geq 1$ be a given real number. A function $d: X \times X \rightarrow R_{+}$is called a $b-$ metric provided that, for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$
(i) $\mathrm{d}(\mathrm{x}, \mathrm{y})=0$ if and only if $\mathrm{x}=\mathrm{y}$
(ii) $\mathrm{d}(\mathrm{x}, \mathrm{y})=\mathrm{d}(\mathrm{y}, \mathrm{x})$
(iii) $\mathrm{d}(\mathrm{x}, \mathrm{z}) \leq \mathrm{s}[\mathrm{d}(\mathrm{y}, \mathrm{x})+\mathrm{d}(\mathrm{y}, \mathrm{z})]$

A pair (X, d) is called $a b$-metric space. It is clear from definition that b-metric space is an extension of usual metric space.
Example 3 ([3]): The space $L_{p}(0<p<1)$ of all real functions $x(t), t \in[0,1]$ such that $\int_{0}^{1}|f(t)|^{p} d t<\infty$, is $b-$ metric space if we take

$$
d(f, g)=\left(\int_{0}^{1}|f(t)-g(t)|^{p} d t\right)^{1 / p} \text { for each } f, g \in L_{p}
$$

Several authors have investigated fixed point theorems on b-metric spaces, one can see [6], [8]
Combining the concept of vector metric space (E-metric space) and b-metric space I. R. Petre [5] defined E-b-metric space as follows:

Definition 1.9 ([5]). Let X be a non-empty set of $s \geq 1$, A functional $d: X \times X \rightarrow E_{+}$is called an $E-b-m e t r i c$ if for any $x, y, z \in X$, the following conditions are satisfied:
(a) $\quad \mathrm{d}(\mathrm{x}, \mathrm{y})=0$ if and only if $\mathrm{x}=\mathrm{y}$
(b) $\quad d(x, y)=d(y, x)$
(c) $\quad \mathrm{d}(\mathrm{x}, \mathrm{z}) \leq \mathrm{s}[\mathrm{d}(\mathrm{x}, \mathrm{y})+\mathrm{d}(\mathrm{y}, \mathrm{z})]$

The triple ($\mathrm{X}, \mathrm{d}, \mathrm{E}$) is called an $\mathrm{E}-\mathrm{b}-$ metric space.
Example 4. Let $d:[0,1] \times[0,1] \rightarrow R^{2}$ defined by $d(x, y)=\left(\alpha|x-y|^{2}, \beta|x-y|^{2}\right)$ then $\left(X, d, R^{2}\right)$ is an E-b-metric space where $\alpha, \beta>0$ and x, y $\in[0,1]$.

Example 5. The space $l_{\mathrm{p}}(0<\mathrm{p}<1), l_{\mathrm{p}}=\left\{x=\left(x_{i}\right): x_{i} \in R, \sum_{i=1}^{\infty}\left|x_{i}\right|^{p}<\infty\right\}$ and $\mathrm{x}=\left\{\mathrm{x}_{\mathrm{i}}\right\}, \mathrm{y}=\left\{\mathrm{y}_{\mathrm{i}}\right\} \in l_{\mathrm{p}}$ define $\rho(\mathrm{x}, \mathrm{y})=\left(\alpha_{1}\|\mathrm{x}-\mathrm{y}\|_{\mathrm{p}}\right.$, $\left.\alpha_{2}\|\mathrm{x}-\mathrm{y}\|_{\mathrm{p}}, \ldots \alpha_{\mathrm{n}}\|\mathrm{x}-\mathrm{y}\|_{\mathrm{p}}\right)$ then $\left(l_{\mathrm{p}}, \rho, \mathrm{R}^{\mathrm{n}}\right)$ is an E -b-metric space.

For more facts regarding vector metric space see [11], [12].
Let X is a non empty set and $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{P}(\mathrm{X})$ is a multivalued operator, we denote by $\mathrm{F}_{\mathrm{T}}=\{\mathrm{x} \in \mathrm{X}: \mathrm{x} \in \mathrm{T}(\mathrm{x})\}$, where
$\mathrm{p}(\mathrm{X})=\{\mathrm{Y}: \mathrm{Y} \subseteq \mathrm{X}\}$;
$\mathrm{P}(\mathrm{X})=\{\mathrm{Y} \in \mathrm{P}(\mathrm{X}): \mathrm{Y} \neq \phi\}$
And in the context of a vector metric space ($\mathrm{X}, \mathrm{d}, \mathrm{E}$), we denote by
$\mathrm{P}_{\mathrm{cl}}(\mathrm{X})=\{\mathrm{Y} \in \mathrm{P}(\mathrm{X}): \mathrm{Y}$ is E- closed $\} ;$
$\mathrm{P}_{\mathrm{b}}(\mathrm{X})=\{\mathrm{Y} \in \mathrm{P}(\mathrm{X}): \mathrm{Y}$ is E - bounded $\} ;$
$\operatorname{Graph}(\mathrm{T})=\{(\mathrm{x}, \mathrm{y}) \in \mathrm{X}: \mathrm{y} \in \mathrm{T}(\mathrm{X})\}$.
Definition 1.10 ([4]). Let ($\mathrm{X}, \mathrm{d}, \mathrm{E}$) be a vector metric space. The operator $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{P}_{\mathrm{cl}}(\mathrm{X})$ is said to be a multivalued k - contraction, if and only if $k \in[0,1)$ and for any $x, y \in X$ and any $u \in T(x)$, there exists $v \in T(y)$ such that

$$
\begin{equation*}
\mathrm{d}(\mathrm{u}, \mathrm{v}) \leq \mathrm{kd}(\mathrm{x}, \mathrm{y}) \tag{*}
\end{equation*}
$$

Definition 1.11 ([4]). Let (X, d, E) be a vector metric space. The operator T: $\mathrm{X} \rightarrow \mathrm{P}(\mathrm{X})$ be a multivalued operator. The sequence $\left(\mathrm{X}_{\mathrm{n}}\right)_{\mathrm{n} \in \mathrm{N}} \subset \mathrm{X}$, recursively defined by

$$
\begin{aligned}
& \left\{x_{0}=x, x_{1}=y\right. \\
& \left\{x_{n+1} \in T\left(x_{n}\right), \text { forall } n \in N\right.
\end{aligned}
$$

is called the sequence of successive approximations of T starting from $(\mathrm{x}, \mathrm{y}) \in \operatorname{Graph}(\mathrm{T})$.
Definition. Let ($\mathrm{X}, \mathrm{d}, \mathrm{E}$) be an E-complete E-b-metric space. The operator $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{P}_{\mathrm{cl}(\mathrm{X}}$) is said to be a multivalued (a,b,c,e,f)contraction if and only if $a, b, c, e, f \in R_{+}$with $a+b+c+e+f<1$ and for any $x, y \in X$ and any $u \in T(x)$, there exists $v \in T(y)$ such that $d(\mathrm{u}, \mathrm{v}) \leq \operatorname{ad}(\mathrm{x}, \mathrm{y})+\mathrm{bd}(\mathrm{x}, \mathrm{u})+\mathrm{cd}(\mathrm{y}, \mathrm{v})+\mathrm{ed}(\mathrm{x}, \mathrm{v})+\mathrm{fd}(\mathrm{y}, \mathrm{u})$

Main Results :

Theorem 1. Let ($\mathrm{X}, \mathrm{d}, \mathrm{E}$) be a complete E-b-metric space with $\mathrm{s} \geq 1$ and E -Archimedean and let $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{P}_{\mathrm{cl}}(\mathrm{X})$ be a multivalued k contraction with sk <1 and $k \in(0,1]$. Then T has a fixed point in X and for any $x \in X$, there exists a sequence of successive approximations of T starting from $(\mathrm{x}, \mathrm{y}) \in \operatorname{Graph}(\mathrm{T})$ for $\mathrm{n} \in \mathrm{N}$ which E-converges in $(\mathrm{X}, \mathrm{d}, \mathrm{E})$ to the fixed point of T .
Proof : Let $x_{0} \in X$ and $x_{1} \in T x_{0}$ then there exists $x_{2} \in T x_{1}$ such that
$\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \leq \mathrm{kd}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right)$
Thus, define the sequence $\left(\mathrm{x}_{\mathrm{n}}\right) \in \mathrm{X}$ by $\mathrm{x}_{\mathrm{n}+1} \in \mathrm{~T} \mathrm{x}_{\mathrm{n}}$ and
$\mathrm{d}\left(\mathrm{X}_{\mathrm{n}}, \mathrm{X}_{\mathrm{n}+1}\right) \leq \mathrm{kd}\left(\mathrm{X}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)$ for $\mathrm{n} \in \mathrm{N}$.
Inductively, we obtain,
$\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) \leq \mathrm{kd}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right) \leq \mathrm{k}^{2} \mathrm{~d}\left(\mathrm{x}_{\mathrm{n}-2}, \mathrm{x}_{\mathrm{n}-1}\right) \leq \ldots \ldots . . \leq \mathrm{k}^{\mathrm{n}} \mathrm{d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right)$ for $\mathrm{n} \in \mathrm{N}$.
Now, for all n and p, we have
$d\left(x_{n}, x_{n+p}\right) \leq s d\left(x_{n}, x_{n+1}\right)+s^{2} d\left(x_{n+1}, x_{n+2}\right)+\ldots \ldots \ldots . .+s^{p} d\left(x_{n+p-1}, x_{n+p}\right) \quad$ for any $n \in N$
$d\left(x_{n}, x_{n+p}\right) \leq s k^{n} d\left(x_{0}, x_{1}\right)+s^{2} k^{n+1} d\left(x_{0}, x_{1}\right)+\ldots \ldots \ldots .+s^{p} k^{n+p-1} d\left(x_{0}, x_{1}\right) \quad$ for any $n \in N$

International Journal of Engineering Research and General Science Volume 5, Issue 4, July-August, 2017
ISSN 2091-2730

$$
=\frac{s k^{n}\left(1-(s k)^{p}\right)}{(1-s k)} \mathrm{d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right) \leq \frac{s k^{n}}{1-s k} \mathrm{~d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right)=\mathrm{a}_{\mathrm{n}} \cdot \mathrm{a}=\mathrm{b}_{\mathrm{n}} \text { for any } \mathrm{n} \in \mathrm{~N}, \mathrm{p} \in \mathrm{~N}
$$

Where $\mathrm{a}_{\mathrm{n}}=\frac{s k^{n}}{1-s k} \downarrow 0$ and $\mathrm{a}=\mathrm{d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right) \in \mathrm{E}^{+}$
Now, since E-Archimedean property, we get $b_{n} \downarrow 0$. So, the sequence $\left\{x_{n}\right\}$ is E-cauchy sequence in X. By the E- completeness of X, there is $\mathrm{z} \in \mathrm{X}$ such that $\mathrm{d}\left(\mathrm{X}_{\mathrm{n}}, \mathrm{z}\right) \leq \mathrm{a}_{\mathrm{n}}$.
We know that $\mathrm{x}_{\mathrm{n}+1} \in \mathrm{~T} \mathrm{x}_{\mathrm{n}}$ for any $\mathrm{n} \in \mathrm{N}$ and by the multivalued k -contraction condition it follows that there exists $\mathrm{u} \in \mathrm{Tz}$ such that $\mathrm{d}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{u}\right) \leq \mathrm{kd}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{z}\right)$ for any $\mathrm{n} \in \mathrm{N}$.
Then the following estimation holds:
Since $d(z, u) \leq \operatorname{sd}\left(z, x_{n+1}\right)+\operatorname{sd}\left(u, x_{n+1}\right)=\operatorname{sd}\left(x_{n+1}, z\right)+\operatorname{sd}\left(x_{n+1}, u\right)$

$$
\begin{aligned}
& \leq \operatorname{skd}\left(\mathrm{x}_{\mathrm{n}, \mathrm{Z})}+\mathrm{sa}_{\mathrm{n}+1}\right. \\
& \leq \operatorname{ska}_{\mathrm{n}}+\mathrm{sa}_{\mathrm{n}+1} \leq \mathrm{s}(\mathrm{k}+1) \mathrm{a}_{\mathrm{n}} \downarrow 0
\end{aligned}
$$

Thus, there exists $\mathrm{z}=\mathrm{u} \in \mathrm{Tz}$ i.e. T has a fixed point in X .
Example 6. Let $\mathrm{E}=\mathrm{R}^{2}$ with componentwise ordering and let $\mathrm{X}=[0,1]$
The mapping $\mathrm{d}: \mathrm{X} \rightarrow \mathrm{E}$ is defined by
$\mathrm{d}(\mathrm{x}, \mathrm{y})=\left(\frac{4}{3}|x-y|^{2},|x-y|^{2}\right)$
Then X is E-b-metric space. Let $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{P}_{\mathrm{cl}}(\mathrm{X})$ with $\mathrm{T}(\mathrm{x})=\{\mathrm{u}(\mathrm{x}), \mathrm{v}(\mathrm{x})\}$, where $\mathrm{u}, \mathrm{v}: \mathrm{X} \rightarrow \mathrm{X}$ are defined by $\mathrm{u}(\mathrm{x})=\frac{x}{2}, v(x)=\frac{x}{3}$
We have the following possibilities:
Case 1: for any $(\mathrm{x}, \mathrm{y}) \in \mathrm{X}$ and any $\frac{x}{2} \in \mathrm{~T}(\mathrm{x})$, there exists $\frac{y}{2} \in \mathrm{~T}(\mathrm{y})$ such that
$d\left(\frac{x}{2}, \frac{y}{2}\right) \leq k d(x, y)$
$\Rightarrow\left(\frac{4}{3}\left|\frac{x}{2}-\frac{y}{2}\right|^{2},\left|\frac{x}{2}-\frac{y}{2}\right|^{2}\right) \leq k\left(\frac{4}{3}|x-y|^{2},|x-y|^{2}\right)$
Case 2: for any (x, y) $\in \mathrm{X}$ and any $\frac{x}{3} \in \mathrm{~T}(\mathrm{x})$, there exists $\frac{y}{3} \in \mathrm{~T}(\mathrm{y})$ such that
$d\left(\frac{x}{3}, \frac{y}{3}\right) \leq k d(x, y)$
$\Rightarrow\left(\frac{4}{3}\left|\frac{x}{3}-\frac{y}{3}\right|^{2},\left|\frac{x}{3}-\frac{y}{3}\right|^{2}\right) \leq k\left(\frac{4}{3}|x-y|^{2},|x-y|^{2}\right)$
For all of these cases, the condition $\mathrm{d}(\mathrm{u}, \mathrm{v}) \leq \mathrm{kd}(\mathrm{x}, \mathrm{y})$ holds for $\mathrm{k}=\frac{1}{2}$. From theorem 1 , it follows that T has a fixed point in X .

Theorem 2. Let ($\mathrm{X}, \mathrm{d}, \mathrm{E}$) be an E- complete E-b-metric space with $\mathrm{s} \geq 1$ and E-Archimedean and let $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{P}_{\mathrm{cl}}(\mathrm{X})$ be a multivalued (a,b,c,e,f)-contraction with $\mathrm{ks}<1$

Where $\mathrm{k}=\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{se}+\mathrm{sf}$
Then T has a fixed point in X and for any $x \in X$, there exists a sequence of successive approximations of T starting from (x, y) $\in \operatorname{Graph}(T)$ which E-converges in (X, $\mathrm{d}, \mathrm{E})$ to the fixed point of T .

Proof: Let $x_{0} \in X$ and $x_{1} \in T x_{0}$ then there exists $x_{2} \in T x_{1}$ such that
$\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \leq \mathrm{ad}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right)+\mathrm{bd}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right)+\mathrm{cd}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)+\mathrm{ed}\left(\mathrm{x}_{0}, \mathrm{x}_{2}\right)+\mathrm{fd}\left(\mathrm{x}_{1}, \mathrm{x}_{1}\right)$
$\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \leq \operatorname{ad}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right)+\operatorname{bd}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right)+\operatorname{cd}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)+\mathrm{ed}\left(\mathrm{x}_{0}, \mathrm{x}_{2}\right)$,
Inductively, we define the sequence $\left(x_{n}\right) \in X, x_{n+1} \in T x_{n}$ for $n \in N$.
$\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) \leq \operatorname{ad}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)+\operatorname{bd}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{cd}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)+\mathrm{ed}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}+1}\right)+\mathrm{fd}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}\right)$
$d\left(x_{n}, x_{n+1}\right) \leq \operatorname{ad}\left(x_{n-1}, x_{n}\right)+b d\left(x_{n-1}, x_{n}\right)+c d\left(x_{n}, x_{n+1}\right)+e d\left(x_{n-1}, x_{n+1}\right)$
$d\left(x_{n}, x_{n+1}\right) \leq \operatorname{ad}\left(x_{n-1}, x_{n}\right)+b d\left(x_{n-1}, x_{n}\right)+c d\left(x_{n}, x_{n+1}\right)+\operatorname{sed}\left(x_{n-1}, x_{n}\right)+\operatorname{sed}\left(x_{n}, x_{n+1}\right)$
(1-c-se) $d\left(x_{n}, x_{n+1}\right) \leq(a+b+$ se $) d\left(x_{n-1}, x_{n}\right) \quad$ for any $n \in N \quad \ldots \ldots . .(1)$
Further,
$\mathrm{d}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{X}_{\mathrm{n}}\right) \leq \operatorname{ad}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{X}_{\mathrm{n}}\right)+\mathrm{bd}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{cd}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{X}_{\mathrm{n}}\right)+\mathrm{ed}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{fd}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}+1}\right)$
$\mathrm{d}\left(\mathrm{X}_{\mathrm{n}+1}, \mathrm{X}_{\mathrm{n}}\right) \leq \mathrm{ad}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{bd}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{X}_{\mathrm{n}}\right)+\mathrm{cd}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)+\operatorname{sfd}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{X}_{\mathrm{n}}\right)+\operatorname{sf} \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{X}_{\mathrm{n}+1}\right)$
(1-b-sf) $d\left(x_{n+1}, x_{n}\right) \leq(a+c+s f) d\left(x_{n-1}, x_{n}\right)$ for any $n \in N$
From (1) and (2),
(1-b-c-se-sf) $d\left(x_{n}, x_{n+1}\right) \leq(2 a+b+c+s e+s f) d\left(x_{n-1}, x_{n}\right)$
$\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) \leq \frac{2 \mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{se}+\mathrm{se}}{1-(b-c-s e-s f)} \mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)$
$\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) \leq \lambda \mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)$
where $\lambda=\frac{2 a+b+c+s c+s f}{1-(b+c+s e+s f)}<1$
Now, $\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) \leq \lambda \mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)+\lambda^{2} \mathrm{~d}\left(\mathrm{x}_{\mathrm{n}-2}, \mathrm{x}_{\mathrm{n}-1}\right)+\ldots \ldots \ldots \ldots \ldots+\lambda^{\mathrm{n}} \mathrm{d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right)$ for any $\mathrm{n} \in \mathrm{N}$
We have

$$
\begin{aligned}
\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+\mathrm{P}}\right) & \leq \operatorname{sd}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)+\mathrm{s}^{2} \mathrm{~d}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+2}\right)+\ldots \ldots \ldots . . \mathrm{s}^{\mathrm{p}} \mathrm{~d}\left(\mathrm{x}_{\mathrm{n}+\mathrm{p}-1}, \mathrm{x}_{\mathrm{n}+\mathrm{p}}\right) \quad \text { for any } \mathrm{n} \in \mathrm{~N} \\
\mathrm{~d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+\mathrm{P}}\right) \leq & \leq \lambda^{\mathrm{n}} \mathrm{~d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right)+\mathrm{s}^{2} \lambda^{\mathrm{n}+1} \mathrm{~d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right)+\ldots \ldots \ldots \ldots+\mathrm{s}^{\mathrm{p}} \lambda^{\mathrm{n}+\mathrm{p}-1} \mathrm{~d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right) \quad \text { for any } \mathrm{n} \in \mathrm{~N} \\
& =\frac{s \lambda^{n}\left(1-(s \lambda)^{p}\right)}{(1-s \lambda)} \mathrm{d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right) \leq \frac{s \lambda^{n}}{1-s \lambda} \mathrm{~d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right) \quad=\mathrm{a}_{\mathrm{n}} . \mathrm{a}=\mathrm{b}_{\mathrm{n}} \text { for any } \mathrm{n} \in \mathrm{~N}, \mathrm{p} \in \mathrm{~N}
\end{aligned}
$$

Where $\mathrm{a}_{\mathrm{n}}=\frac{s \lambda^{n}}{1-s \lambda} \quad \downarrow 0$ and $\mathrm{a}=\mathrm{d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right) \in \mathrm{E}^{+}$. Note that $\mathrm{s} \lambda<1$, since $\mathrm{sk}<1$.
On the other hand, by E-Archimedean property, we get $b_{n} \downarrow 0$. So, the sequence $\left\{x_{n}\right\}$ is E-cauchy sequence in X. By the Ecompleteness of X, there is $z \in X$ such that $d\left(x_{n}, z\right) \leq a_{n}$.
We know that $x_{n+1} \in T x_{n}$ for any $n \in N$ and by the multivalued (a, b, c, e, f)-contraction condition it follows that there exists $u \in T z$ such that
$d\left(x_{n+1}, u\right) \leq a d\left(x_{n}, z\right)+b d\left(x_{n}, x_{n+1}\right)+c d(z, u)+e d\left(x_{n}, u\right)+f d\left(z, x_{n+1}\right)$ for any $n \in N$.

Since $d(z, u) \leq \operatorname{sd}\left(x_{n+1}, u\right)+\operatorname{sd}\left(x_{n+1}, z\right)$

$$
\begin{aligned}
& \leq \operatorname{sad}\left(x_{n}, z\right)+\operatorname{sbd}\left(x_{n}, x_{n+1}\right)+\operatorname{scd}(z, u)+\operatorname{sed}\left(x_{n}, u\right)+\operatorname{sfd}\left(z, x_{n+1}\right)+\operatorname{sd}\left(x_{n+1}, z\right) \\
& \leq \operatorname{sa~} a_{n}+\operatorname{sbd}\left(x_{n}, x_{n+1}\right)+\operatorname{scd} d(z, u)+\operatorname{se}\left[\operatorname{sd}\left(x_{n}, z\right)+\operatorname{sd}(u, z)\right]+\operatorname{sf} a_{n+1}+\operatorname{sa} a_{n+1} \\
& \leq s(a+f+1) a_{n}+\operatorname{sbd}\left(x_{n}, x_{n+1}\right)+\operatorname{scd}(z, u)+s^{2} e d\left(x_{n}, z\right)+s^{2} e d(z, u)
\end{aligned}
$$

$\left(1-s c-s^{2} e\right) d(z, u) \leq s(a+f+1) a_{n}+s b d\left(x_{n}, x_{n+1}\right)+s^{2} e a_{n}$
$\mathrm{d}(\mathrm{z}, \mathrm{u}) \leq \frac{s(a+f+s e+1)}{\left(1-s c-s^{2} e\right)} \mathrm{a}_{\mathrm{n}}+\frac{s b d\left(x_{n}, x_{n+1}\right)}{\left(1-s c-s^{2} e\right)} \downarrow 0$, note that $1-\mathrm{sc}-\mathrm{s}^{2} \mathrm{e}>0$.
Thus, we have there exists $\mathrm{z}=\mathrm{u} \in \mathrm{Tz}$ i.e. T has a fixed point in X .
Theorem 3. Let ($\mathrm{X}, \mathrm{d}, \mathrm{E}$) be a complete $\mathrm{E}-\mathrm{b}-$ metric space with E -Archimedean and let $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{P}_{\mathrm{cl}}(\mathrm{X})$ be a multivalued mapping and satisfies the following conditions :
(i) for any $x \in X, d(u, v) \leq k L(x, y)$ where $u \in T x, v \in T y, k s<1$
and

$$
\mathrm{L}(\mathrm{x}, \mathrm{y}) \in\left\{\mathrm{d}(\mathrm{x}, \mathrm{y}), \mathrm{d}(\mathrm{x}, \mathrm{u}), \mathrm{d}(\mathrm{y}, \mathrm{v}), \frac{1}{2}[\mathrm{~d}(\mathrm{x}, \mathrm{v})+\mathrm{d}(\mathrm{y}, \mathrm{u})], \frac{1}{2}[\mathrm{~d}(\mathrm{x}, \mathrm{u})+\mathrm{d}(\mathrm{y}, \mathrm{v})]\right\}
$$

Then T has a fixed point in X and for any $x \in X$, there exists a sequence of successive approximations of T starting from (x, y) $\in \operatorname{Graph}(T)$ which E-converges in (X, d, E) to the fixed point of T.

Proof : Let $\mathrm{x}_{0} \in \mathrm{X}$ and $\mathrm{x}_{1} \in \mathrm{Tx}_{0}$.
Inductively, we define the sequence $\left\{x_{n}\right\} \in X, x_{n+1} \in T x_{n}$ for $n \in N$.
We first show that

$$
\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) \leq \mathrm{kL}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right) \text { for all } \mathrm{n} .
$$

Now we have to consider the following cases:
Case 1: $d\left(x_{n}, x_{n+1}\right) \leq \operatorname{kd}\left(x_{n-1}, x_{n}\right)$ for all n.
Case 2: $d\left(x_{n}, x_{n+1}\right) \leq \operatorname{kd}\left(x_{n-1}, x_{n}\right)$ for all n.
Case 3: $\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) \leq \mathrm{kd}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)$
$\Rightarrow \quad \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)=0$ for all n .
Case 4: $d\left(x_{n}, x_{n+1}\right) \leq k \frac{1}{2}\left[d\left(x_{n-1}, x_{n+1}\right)+d\left(x_{n}, x_{n}\right)\right]$

$$
\begin{aligned}
& \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) \leq \frac{\mathrm{k}}{2}\left[\mathrm{~d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}+1}\right)\right] \\
& \leq \frac{\mathrm{k}}{2} \mathrm{~s}\left[\mathrm{~d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)\right] \\
&\left(1-\frac{\mathrm{k}}{2} \mathrm{~S}\right) \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) \leq \frac{\mathrm{k}}{2} \mathrm{~s} \mathrm{~d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)
\end{aligned}
$$

$$
\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) \leq\left(\frac{\frac{\mathrm{k}}{2} \mathrm{~s}}{1-\frac{\mathrm{ks}}{2}}\right) \mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right) \quad\left\{\frac{\mathrm{ks}}{2}<\frac{1}{2} \text { i.e. } \mathrm{ks}<1\right\}
$$

International Journal of Engineering Research and General Science Volume 5, Issue 4, July-August, 2017
ISSN 2091-2730
Thus $\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) \leq \lambda_{1} \mathrm{~d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)$ where $\lambda_{1}=\left(\frac{\frac{\mathrm{k}}{2} \mathrm{~s}}{1-\frac{\mathrm{ks}}{2}}\right)<1$
Case 5: $\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) \leq \mathrm{k} \frac{1}{2}\left[\mathrm{~d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)\right]$

$$
\leq \frac{\mathrm{k}}{2}\left[\mathrm{~d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)\right]
$$

$\left(1-\frac{\mathrm{k}}{2}\right) \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) \leq \frac{\mathrm{k}}{2} \mathrm{~d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right)$

$$
\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) \leq\left(\frac{\frac{\mathrm{k}}{2}}{1-\frac{\mathrm{k}}{2}}\right) \mathrm{d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right) \quad\left\{\because \frac{\mathrm{k}}{2}<\frac{1}{2}\right\}
$$

$\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) \leq \lambda_{2} \mathrm{~d}\left(\mathrm{x}_{\mathrm{n}-1}, \mathrm{x}_{\mathrm{n}}\right) \quad$ where $\lambda_{2}=\frac{\frac{\mathrm{k}}{2}}{1-\frac{\mathrm{k}}{2}}<1$
Thus for all n and p, we have

$$
\begin{aligned}
\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+\mathrm{p}}\right) & \leq \mathrm{sd}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)+\mathrm{s}^{2} \mathrm{~d}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{x}_{\mathrm{n}+2}\right)+\ldots+\mathrm{s}^{\mathrm{p}} \mathrm{~d}\left(\mathrm{x}_{\mathrm{n}+\mathrm{p}-1}, \mathrm{x}_{\mathrm{n}+\mathrm{p}}\right) \\
\leq & \mathrm{s} \lambda^{\mathrm{n}} \mathrm{~d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right)+\mathrm{s}^{2} \lambda^{\mathrm{n}+1} \mathrm{~d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right)+\ldots+\mathrm{s}^{\mathrm{p}} \lambda^{\mathrm{n}+\mathrm{p}-1}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right) \\
= & \frac{\mathrm{s} \lambda^{\mathrm{n}}\left(1-(\mathrm{s} \lambda)^{\mathrm{p}}\right)}{(1-\mathrm{s} \lambda)} \mathrm{d}\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right) \leq\left(\frac{s \lambda^{n}}{1-s \lambda}\right) d\left(x_{0}, x_{1}\right)
\end{aligned}
$$

$$
=a_{n} \cdot a=b_{n} \text { for any } n \in N \text { and } p \in N
$$

Now, since E is Archimedean, we have $b_{n} \downarrow 0$. So the sequence $\left\{x_{n}\right\}$ is $E-C a u c h y$ in X. By the $E-$ completeness of X, there is $z \in X$ such that $d\left(x_{n}, z\right) \leq a_{n}$.

We know that $\mathrm{x}_{\mathrm{n}+1} \in \mathrm{Tx}_{\mathrm{n}}$ and $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{P}_{\mathrm{cl}}(\mathrm{X})$ be a multivalued mapping so it follows that there exists $\mathrm{w} \in \mathrm{Tz}$ such that

$$
\mathrm{d}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{w}\right) \leq \mathrm{kL}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{z}\right) \text { for any } \mathrm{n} \in \mathrm{~N}
$$

Then the following estimation holds:
$\mathrm{d}(\mathrm{z}, \mathrm{w}) \leq \mathrm{sd}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{z}\right)+\mathrm{sd}\left(\mathrm{x}_{\mathrm{n}+1}, \mathrm{w}\right)$

$$
\leq \operatorname{ska}_{\mathrm{n}}+\operatorname{skL}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{z}\right)
$$

Where $\mathrm{L}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{z}\right) \in\left\{\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{z}\right), \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right), \mathrm{d}(\mathrm{z}, \mathrm{w}), \frac{1}{2}\left[\mathrm{~d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{w}\right)+\mathrm{d}\left(\mathrm{z}, \mathrm{x}_{\mathrm{n}+1}\right)\right], \frac{1}{2}\left[\mathrm{~d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right)+\mathrm{d}(\mathrm{z}, \mathrm{w})\right]\right\}$
Case 1: d(z,w) $\leq \operatorname{ska}_{\mathrm{n}}+\operatorname{skL}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{z}\right) \leq \mathrm{ska}_{\mathrm{n}}+\operatorname{ska}_{\mathrm{n}-1} \leq 2 \mathrm{ska}_{\mathrm{n}-1} \downarrow 0$
Case 2:d(z,w) $\leq \operatorname{ska}_{n}+\operatorname{skd}\left(\mathrm{X}_{\mathrm{n}}, \mathrm{X}_{\mathrm{n}+1}\right) \leq \operatorname{ska}_{\mathrm{n}}+\operatorname{sk}\left[\operatorname{sd}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{z}\right)+\operatorname{sd}\left(\mathrm{z}, \mathrm{x}_{\mathrm{n}+1}\right)\right]$

$$
\leq s k a_{n}+s^{2} k a_{n-1}+s^{2} k a_{n} \leq s k a_{n}+2 s^{2} k a_{n-1} \leq \operatorname{sk}(1+2 s) a_{n-1} \quad\left(\because a_{n} \leq a_{n-1}\right)
$$

Case $3: \mathrm{d}(\mathrm{z}, \mathrm{w}) \leq \mathrm{ska}_{\mathrm{n}}+\mathrm{skd}(\mathrm{z}, \mathrm{w})$

$$
(1-\mathrm{sk}) \mathrm{d}(\mathrm{z}, \mathrm{w}) \leq \mathrm{ska}_{\mathrm{n}}
$$

International Journal of Engineering Research and General Science Volume 5, Issue 4, July-August, 2017
ISSN 2091-2730

$$
\mathrm{d}(\mathrm{z}, \mathrm{w}) \leq\left(\frac{s k}{1-s k}\right) a_{n} \downarrow 0
$$

$$
\mathrm{d}(\mathrm{z}, \mathrm{w})=0
$$

Case $4: d(z, w) \leq \operatorname{ska}_{n}+\frac{1}{2} \operatorname{sk}\left[d\left(x_{n}, w\right)+d\left(z, x_{n+1}\right)\right] \leq \operatorname{ska}_{n}+\frac{\text { sk }}{2}\left[\left\{\operatorname{sd}\left(x_{n}, z\right)+\operatorname{sd}(z, w)\right\}+d\left(x_{n+1}, z\right)\right]$

$$
\begin{aligned}
& \leq s k a_{n}+\frac{s^{2} k}{2} d\left(x_{n}, z\right)+\frac{s^{2} k}{2} d(z, w)+\frac{s k}{2} d\left(x_{n+1}, z\right) \\
& \leq \operatorname{ska}_{n}+\frac{s^{2} k}{2} a_{n-1}+\frac{s^{2} k}{2} d(z, w)+\frac{s k}{2} a_{n} \\
&\left(1-\frac{s^{2} k}{2}\right) d(z, w) \leq\left(\frac{s^{2} k}{2}+\frac{3 s k}{2}\right) a_{n-1} \\
& d(z, w) \leq \frac{\left(\frac{s^{2} k}{2}+\frac{3 s k}{2}\right)}{\left(1-\frac{s^{2} k}{2}\right)} a_{n-1} \\
& \Rightarrow d(z, w)=0
\end{aligned}
$$

Case $5: d(z, w) \leq \operatorname{ska}_{n}+\frac{1}{2} \operatorname{sk}\left[d\left(x_{n}, x_{n+1}\right)+d(z, w)\right] \leq \operatorname{ska}_{n}+\frac{\text { sk }}{2}\left[\left\{\operatorname{sd}\left(x_{n}, z\right)+\operatorname{sd}\left(x_{n+1}, z\right)\right\}+d(z, w)\right]$

$$
\begin{gathered}
\left(1-\frac{s k}{2}\right) d(z, w) \leq s k a_{n}+\frac{s^{2} k}{2} a_{n-1}+\frac{s^{2} k}{2} a_{n} \\
d(z, w) \leq \frac{s k(s+1)}{1-\frac{s k}{2}} a_{n-1} \downarrow 0 \\
\Rightarrow \mathrm{~d}(z, \mathrm{w})=0
\end{gathered}
$$

Therefore T has a common fixed point in X .

REFERENCES:

[1] C.D.Aliprantis and K.C.Border, "Infinite Dimensional Analysis" Berlin: Springer-Verlag, 1999
[2] Cuneyt Cevik and Ishak Altun, "Vector Metric Spaces and Some Properties"Topological Methods in Nonlinear Analysis, Volume 34, 375-382,2009.
[3] Ishak Altun and Cuneyt Cevik "Some Common Fixed Point Theorems in Vector Metric Spaces"Faculty of Sciences and Mathematics, University of Nis. Serbia, Filomat 25:1,105-113,July5,2010.
[4] Ioan-Radu-Petre "Fixed Point Theorems In Vector Metric Spaces For Multivalued Operators" Miskolc Mathematical Notes,HU eISSN 1787-2413, Volume 16,391-406, 2015.
[5] Ioan-Radu-Petre "Fixed Point Theorems in E-b-Metric spaces" J.Non Linear Science 264-271, 2014.
[6] Pankaj Kumar Mishra, Sachdeva and Banrrjee, "Some Fixed Point Theorems in b-Metric Spaces" Turkish Journal of Analysis and Number Theory, Volume 2, No.1, 19-22,2014.
[7] Luxemburg and Zannen, "Riesz Spaces" North-Holland Publishing Company, Amsterdam,1971.
[8] Tania Lazer and Gabriela, "The Theory Of Reich’s Fixed Point Theorem for Multivalued Operators" Fixed Point Theory and Applications, Volume 2010, Article ID 178421, 10 pages, 2010.
[9] Lakshmi Kant Dey, "Fixed Point Theorems in Vector Metric Spaces" International Journal of Mathematical Analysis, Volume 4, no. 48, 2395-2400, 2010.
[10] Sam Nadler Jr. "Multivalued Contraction Mapping" Pacific Journal Of Mathematics, Vol 30, No. 2, 1969.
[11] Renu Praveen Pathak and Ramakant Bhardwaj "Fixed Point and Common Fixed Theorems in Vector Metric Spaces" Mathematical Theory and Modeling, ISSN 2224-5804 Vol.3, No. 6, 2013.
[12] Bazine Safia, Abdelkrim Aliouche and Fateh Ellaggoune, "Common Fixed Point Theorems on Spaces With Vector -Valued Metrics" Congres des Mathematiciens Algeriens, 11-13, May 2014.
[13] Do Hong Tan and Nguyen Thi Thanh Ha " Nadler’s Fixed Point Theorem in Cone Metric Spaces" Vietnam Journal Of Mathematics, 40:4, 447-452, 2012.
[14] Bakhtin, "The Contraction Mapping Principle In Quasi - Metric Spaces" Functional Analysis Unianwisk Ges. Pwd. Inst 30, 26-37, 1989

