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Abstract : The aim of this paper is to prove some fixed point theorems for multivalued operators in E-b-metric space which is a Riesz
space valued b-metric space.
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Introduction : F. Riesz [7] introduced the concept of Riesz space. For a more extensive treatment of the theory of Riesz space we
refer C. D. Aliprantis and K. C. Border [1], W. A. J.Luxemburg and A.C. Zannen [ 7].

Riesz space (or vector lattice) is an ordered vector space and at the same time a lattice also. Let E be a Riesz space with the
positive cone E+ = {x € E : x > 0} for an element x € E, the absolute value |x|, the positive part x*, the negative part X are defined as
IX| = X v(=x), x* =x v 0, x~ = (-X) v 0 respectively.

If every non—empty subset of E which is bounded above has a supremum, then E is called Dedekind complete or order complete. The
1

Riesz space E is said to be Archimedean if —a 4 0 holds for every a € E..
n

Example 1 ([1]). Let R"(n > 1) be the real linear space of all real n—tuples X = (X1,X2, X3, ..., Xn) and y = (y1,Y2,Ys,...... ,yn) With
coordinatewise addition and multiplication by real numbers. If we define that x <y means that xx < yx holds for 1 <k <n, then R"is a
Riesz space with respect to this partial ordering.

Definition 1.1 ([1]). Let E be a Riesz space. A sequence (by) is said to be order convergent or o—convergent to b if there is a sequence
(an) in E satisfying a, ¥ 0 and |b, — b| < a, for all n, written as by —2 5 porolimb,=b.

Definition 1.2 ([1]). A sequence (bn) is said to be order Cauchy (o—Cauchy) if there exists a sequence (a») in E such that a, + 0 and |b,
— bnsp| < an holds for all nand p.

Definition 1.3 ([1]). A Riesz space E is said to be o—Cauchy complete if every o—Cauchy sequence is o—convergent.

If range space of a metric space is Riesz space then it becomes a vector metric space.

Definition 1.4 ([2]). Let X be a non—empty set and E be a Riesz space. Then function d : X x X — E is said to be a vector metric (or
E—metric) if it satisfies the following properties :

€)] dix,y)=oifandonlyifx =y

(b) d(x,y) <d(x,z) +d(y, z) forall x,y, z € X.

Also the triple (X, d, E) is said to be a vector metric space. Vector metric space is generalization of metric space. For arbitrary
elements X, y, z, w of a vector metric space, the following statements are satisfied :

0] 0<d(x,y) (i) d(x, y) = d(y, x)

(i) |d(x, 2) —d(y, 2)| < d(x, y)

(iv)  [d(x, 2) —d(y, W)l <d(x, y) + d(z, w)
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Example 2 ([2]). A Riesz space is a vector metric space d : E x E — E defined by d(X, y) = | X — y|. This vector metric is said to be
the absolute valued metric on E.

Definition 1.5 ([2]). A sequence (Xn) in a vector metric space (X, d, E) vectorial converges (E—converges) to some x € E, written as
X, —2E5 X if there is a sequence (a») in E satisfying a, ¥ 0 and d(xn, X) < a, for all n.

Definition 1.6 ([2]). A sequence (x,) is called E—cauchy sequence whenever there exists a sequence (an) in E such that a, 4 0 and d(xn,
Xn+p) < an holds for all nand p.
Definition 1.7 ([3]). A vector metric space X is called E-complete if each E—cauchy sequence in X, E converges to a limit in X.

For more details and results regarding vector metric spaces we refer to [3], [5].
When E = R, the concepts of vectorial convergence and metric convergence, E—cauchy sequence and Cauchy sequence in metric are
same.

When also X = E and d is the absolute valued vector metric on X, then the concept of vectorial convergence and convergence
in order are the same.
I.A. Bakhtin [14 ] defined the concept of b-metric space in 1989.
Definition 1.8 ([6]) : Let X be a non—empty set and let s > 1 be a given real number. A function d : X x X — R is called a b—metric
provided that, forall x,y, z € X
Q) dix,y)=0ifandonly if x =y
(i) d(x, y) =d(y, x)
(i) d(x, 2) < s[d(y, x) +d(y, 2)]
A pair (X, d) is called a b—metric space. It is clear from definition that b—metric space is an extension of usual metric space .

1
Example 3 ([3]) : The space Ly(0 < p < 1) of all real functions x(t), t [0, 1] such that I| f(t) P dt <o, is b—metric space if we take
0

1 1/p
d(f, 9) =(J.| f(t)—g(t) P dt} foreach f, g € L,
0

Several authors have investigated fixed point theorems on b—metric spaces, one can see [6], [8]

Combining the concept of vector metric space (E-metric space) and b-metric space I. R. Petre [5] defined E—b—metric space as
follows:

Definition 1.9 ([5]). Let X be a non—empty set of s > 1, A functional d : X x X — E. is called an E-b—metric if for any X, y, z € X,
the following conditions are satisfied :

€)] dix,y)=0ifandonlyifx =y

(b) d(x, y) =d(y, x)

(© d(x, 2) <s[d(x, y) +d(y, 2)]

The triple (X, d, E) is called an E-b—metric space.

Example 4. Let d: [0,1]x [0,1]— RZ?defined by d(x,y) = (a.|x-y[%, B [x-y[?) then (X,d,R?) is an E-b-metric space where o, B > 0 and x,y
e [0,1].
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Example 5 . The space I,(0 < p < 1), Ip:{x =(x):x €R, §:|Xi |p < oo} and x = {x}, y ={ vi} € I, define p(x, v) = (o1 [IX = Yllp,
i-1
a2|[X = Yllp,--- an||X — Yllo) then (I, p, R™) is an E-b-metric space.
For more facts regarding vector metric space see [11], [12].
Let X is a non empty set and T: X — P(X) is a multivalued operator, we denote by Fr = {xe X :xe T(x)}, where
PX)={Y:YcX}
P(X) ={Y e P(X) : Y # ¢}
And in the context of a vector metric space (X, d, E), we denote by
Pa (X) ={Y € P(X) : Y is E- closed};
Po (X) ={Y e P(X) : Y is E- bounded};
Graph(T) = {(x,y) € X:y € T(X)}.
Definition 1.10 ([4]). Let (X, d, E) be a vector metric space. The operator T: X — P¢ (X) is said to be a multivalued k- contraction, if
and only if k € [0,1) and for any x, y € X and any u € T(x), there exists v e T(y) such that
d(uVv)<kdXy) e *)
Definition 1.11 ([4]). Let (X, d, E) be a vector metric space. The operator T: X — P (X) be a multivalued operator. The sequence

(Xn)nen < X, recursively defined by
X% =Xx=Y,
{X,1 €T (X,), forallneN
is called the sequence of successive approximations of T starting from (x,y) € Graph (T).
Definition. Let (X, d, E) be an E-complete E-b-metric space. The operator T : X —Pq(X) is said to be a multivalued (a,b,c,e,f)-

contraction if and only if a,b,c,e,f € R+ with a+b+c+e+f <1 and for any x,y € X and any u € T(x), there exists ve T(y) such that
d(u,v) <ad(x,y) +bd (x,u) + cd(y,v) +e d(x,v) + fd(y,u)

Main Results :

Theorem 1. Let (X, d, E) be a complete E-b-metric space with s > 1 and E-Archimedean and let T : X —P¢(X) be a multivalued k-
contraction with sk < 1 and k € (0,1]. Then T has a fixed point in X and for any x e X, there exists a sequence of successive
approximations of T starting from (x,y) € Graph(T) for n € N which E-converges in (X, d, E) to the fixed point of T.

Proof : Let Xo € X and X1 € TXothen there exists X, € Txa such that

d(x1,%x2) < k d(x0,X1)

Thus, define the sequence (Xn) € X by Xn+1 € Txn and

d(Xn,Xn+1) < k d(xn-1,Xn) forn e N.

Inductively, we obtain,

d(XnXn+1) < k d(Xn-1,%n) < k2 d(Xn2,Xn1) < ooeennne < k"d(xo,x1) forn e N.

Now, for all nand p, we have

d(Xn,Xn+p) < sd(Xn,Xn+1) + S2A(Kns1,Xn42) Fovvnernn. + 8P d(Xn+p-1,Xn+p)  fOr any neN

d(Xn,Xn+p) < sk™ d(Xo,X1) + S2 K™ d(Xo,X1) +..eonenn. +sP k™1 d(xo,x1) forany neN
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sk (1-(sk)? "
=——— = d(Xo,x1) < —— d(Xo,x1) =ana=byforany ne N,pe N

(1-sk) 1-sk

n

Where a, = 4 0 and a = d(xo, x1) € E*

1-sk
Now, since E-Archimedean property, we get b, 4 0. So, the sequence {x,} is E-cauchy sequence in X. By the E- completeness of X,
there is ze X such that d(Xn,z) < an,
We know that xn+1 € TX, for any n e N and by the multivalued k-contraction condition it follows that there exists ue Tz such that
d(Xn+1,u) <k d(xn,z) forany neN.
Then the following estimation holds:
Since d(z,u) <sd(z,xn+1) + SA(U,Xn+1) = SA(Xn+1,2) + SA(Xn+1,U)
< skd(xn,z) + San+1
< skan + Sanss < s(k+1)an 4 0
Thus, there exists z=u € Tz i.e. T has a fixed point in X.
Example 6. Let E = R? with componentwise ordering and let X = [0,1]

The mapping d : X — E is defined by
4 2 2
d(x, y) = gh—w,V—y

X
Then X is E-b-metric space. Let T: X — Pu(X) with T(x) = {u(X), V(x)}, where u,v :X — X are defined by u(x) = > v(x)=

w | x

We have the following possibilities:

X
Case 1: for any (X,y) € X and any E € T(x), there exists % € T(y) such that

d(%,%jskd(x, y)

4

2
Ly
B

f_lr <k(ﬂ‘x_y|2
2 2 3 '

2 2

2
x—y|j
y

X
Case 2: for any (x,y) € X and any § € T(x), there exists g € T(y) such that

d(%%jskd(x, y)

4

3

2
z_z‘

2
E_X‘ Sk(ﬂ‘x_wz,
3 3 3

3 3

2
x—y|j

1
For all of these cases, the condition d(u,v) <k d(x,y) holds for k = — . From theorem 1, it follows that T has a fixed point in X.
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Theorem 2. Let (X, d, E) be an E- complete E-b-metric space with s > 1 and E-Archimedean and let T : X —P(X) be a multivalued
(a,b,c,e,f)-contraction with ks <1

Where k= a+b+c+se+sf

Then T has a fixed point in X and for any x € X, there exists a sequence of successive approximations of T starting from (X,y)
€ Graph(T) which E-converges in (X, d, E) to the fixed point of T.

Proof : Let Xo € X and X1 € TXothen there exists X, € Txa such that

d(x1,Xx2) < ad(Xo,X1) + b d(Xo,X1) +C d(X1,X2) +e d(Xo,X2) +fd(X1,X1)

d(x1,X2) < ad(xo,X1) + bd(xo,X1) +cd(X1,X2) +€ d(Xo,X2),

Inductively, we define the sequence (Xn) € X, Xn+1 € TX, forn e N.
d(Xn,Xn+1) < a d(Xn-1,Xn) + b d(Xn-1,Xn) +C d(Xn,Xn+1) +€ d(Xn-1,Xn+1) +F d(Xn,Xn)
d(Xn,Xn+1) < @ d(Xn-1,%n) + b d(Xn-1,Xn) +C d(Xn,Xn+1) +€ d(Xn-1,Xn+1)
d(Xn,Xn+1) < a d(Xn-1,Xn) + b d(Xn-1,Xn) +€ d(Xn,Xn+1) +S€ d(Xn-1,Xn) + S€ d(Xn, Xn+1)
(1-c-se) d(Xn,Xn+1) < (atbtse) d(Xn-1,Xn) foranyn e N ceeee(D)
Further,
d(Xn+1,%n) < a d(Xn-1,Xn) + b d(Xn+1,%n) +C d(Xn-1,Xn) +€ d(Xn,Xn) +f d(Xn-1,Xn+1)
d(Xn+1,Xn) < a d(Xn-1,Xn) + b d(Xn+1,Xn) +C d(Xn-1,Xn) +SF d(Xn-1,Xn) +SF d(Xn,Xn+1)
(1-b-sf) d(Xn+1,Xn) < (atctsf) d(Xn-1,Xn) foranyne N ... )
From (1) and (2),

(1-b-c-se-sf) d(xn, Xn+1) < (2a+b+c+se+sf) d(Xn-1, Xn)

0t Y1) < 2a+b+c+se+se Ao, x0)
1-(b—c—se—sf)

d(Xn, Xn+1) <A d(Xn-1, Xn)

2a+b+c+sc+sf
where A = <
1-(b+c+se+sf)
Now, d(Xn, Xn+1) <A d(Xn-1, Xn) + A2 d(Xn-2, Xn-1) Fovvrvvnnnnnnnn +A" d(Xo, X1) for any neN
We have
d(Xn,Xn+p) < sd(Xn,Xn+1) + S2d(Xn+1,Xn42) Foovvnenn. + 8P d(Xn+p-1,Xn+p)  for any neN
d(Xn,Xn+p) < sA" d(Xo,X1) + 2 AL d(Xo,X0) F.venen + sPAMP1 d(xo,x1) for any neN
52" (1-(s2)°) o
= ——— = d(Xo,Xx1) < —— d(Xo,X1) =ana=byforany ne N,pe N
(1-s2) 1-s4
n
Where a, = 4 0 and a =d(xo, X1) € E*. Note that sk <1, since sk < 1.

1-sA
On the other hand, by E-Archimedean property, we get b,d0. So, the sequence {x.} is E-cauchy sequence in X. By the E-
completeness of X, there is ze X such that d(xn,z) <an
We know that xn+1 € Tx, for any n € N and by the multivalued (a,b,c,e,f)-contraction condition it follows that there exists ue Tz such
that
d(Xn+1,u) <a d(xn,2) + b d(Xn, Xn+1) + € d(z,u) + € d(Xn,u) + f d(z, Xn+1) for any neN.
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Since d(z,u) <sd(Xn+1,U) + 5d(Xn+1,2)
< sad(Xn,z) + sb d(Xn, Xn+1) + SC d(z,u) + se d(Xn,u) + sf d(z, Xn+1) + SA(Xn+1,2)
< sa ap +sb d(Xn, Xn+1) + SC d(z,u) + se [sd(Xn,z) +sd(u,2)] + Sf @n+1 + San+1
<s(a+f+1) an+ sb d(Xn, Xn+1) + sc d(z,u) + s% d(xn,z) + s d(z,u)

(1-sc-s%) d(z,u) < s(a+f+1)an + sh d(Xn, Xn+1) + S%€ an

sbd (X, X,.,)

n? *n+l

(l— sC— sze)

s(a+ f +se+1)
(l—sc—sze)

d(z,u) < an + 40, note that 1- sc-s% > 0.

Thus, we have there exists z = ue Tz i.e. T has a fixed point in X.

Theorem 3. Let (X, d, E) be a complete E-b—metric space with E-Archimedean and let T : X —P¢(X) be a multivalued mapping and
satisfies the following conditions :

0] forany x € X, d(u,v) < kL(X,y) where ue Tx, ve Ty, ks<1

and

1 1
L(x, y) € {d(x.y), d(x.u), d(y.v), > [d(x,v) +d(y,u)l, 5 [d(x,u) +d(y.V)I}

Then T has a fixed point in X and for any x e X, there exists a sequence of successive approximations of T starting from (x,y)
€ Graph(T) which E-converges in (X, d, E) to the fixed point of T.
Proof : Let xo € X and X1 € TXo,
Inductively, we define the sequence {Xn} € X, Xn+1 €TXn forn e N.
We first show that
d(Xn, Xn+1) £ KL(Xn-1, Xn) for all n.
Now we have to consider the following cases :
Case 1 : d(Xn, Xn+1) < Kd(Xn-1, Xn) forall n.
Case 2 : d(Xn, Xn+1) < kd(Xn-1, Xn) forall n.
Case 3 : d(Xn,Xn+1) < Kd(Xn, Xn+1)

= d(Xn, Xn+1) = O for all n.

Case 4 : d(Xn,Xn+1) < k% [d(Xn-1, Xn+1) + d(Xn, Xn)]
k
d(Xn,Xn+1) < E[d(anl,Xnﬂ)]

< =5 [d(Xn-1,Xn) + d(Xn,Xn+1)]

N | X

l—ES d(Xn,X )<Esd(x Xn)
2 nAn+l) = 2 n—1,An

K
=S

d(Xn,Xns1) < 2 d(Xn-1,Xn) {% <% ie ks< 1}

1 ks
2
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k
—S
Thus d(Xn, Xn+1) <A1 d(Xn-1,Xn) Where A1 = 2 <1
S
2
1
Case 5 : d(Xn,Xn+1) < kE [d(Xn-1, Xn) + d(Xn, Xn+1)]
Kk
< E [d(Xn-1, Xn) + d(Xn, Xn+1)]
k k
(l_z)d(xn J Xn+1) < Ed(xn—li Xn)
k
d(x,,X,.,) < _2 d(x, ,,X,) {E < 1}
LK 2 2
2
k
d(Xn,Xn+1) < A2 d(Xn-1,%n) where A, = _2 <1
LK
2

Thus for all n and p, we have
d(Xn,Xn+p) S Sd(Xn, Xn+1) + SZ d(Xn+1,Xn+2) +...+ Spd(xn+p—1xxn+p)

< sA™Md(Xo, X1) + 82 A" d(Xo,X1) + ... + SPAMPL (Xo,X1)

_ SAT(1—-(sM)P) _ sA"
T (-5 d(x°’xl)‘(1—s,1jd(x°’xl)

=ana=bh, foranyne N and pe N

Now, since E is Archimedean, we have b,{ 0. So the sequence {x,} is E-Cauchy in X. By the E—completeness of X, there is z € X
such that d(Xn, z) < an.
We know that Xn+1 € TXn and T : X —P¢(X) be a multivalued mapping so it follows that there exists w e Tz such that
d(Xn+1,W) < KL(Xn,z) foranyn e N
Then the following estimation holds:
d(z,w) < sd(Xn+1,2) + sd(Xn+1,W)

< skay + skL(Xn,2)
Where L(Xn,z) € {d(Xn,2), d(Xn,Xn+1), d(z,W), % [d(Xn,w) + d(z,Xn+1)], % [d(Xn,Xn+1) + d(z,W)]}

Case 1 : d(z,w) < skay + SKL(Xn,z) < skan + skan1 < 2skan140
Case 2 : d(z,w) < skan + skd(Xn,Xn+1) < Skan + sk[sd(Xn,z) + sd(z,Xn+1)]
< skan + s?Kan.1 + s?kan < skan +25%kan.1 < Sk(1 +2S)an1 (. an < an1)
Case 3 : d(z,w) < ska, + skd(z,w)
(1-sk) d(z,w) < skan
123 www.ijergs.org
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d(z,w) < (ij aio
7 \d-sk)

d(zw) =0

Case 4 : d(z,w) < ska, + % sk[d(Xn,w) +d(z,Xn+1)] < skan + % [{sd(xn, ) + sd(z,w)} +d(Xn+1, Z)]

2 2
< skan+%d(xn,z)+%d(z,w) +%d(xn+1, Z)

2 2
SSkan+%an_l+%d(Z,W)+$a

2 n
2 2
1—ﬂ d(z,w) < ﬂ+3S—k a, .,
2 2 2

(szk Bskj
2
d(z,w)<

72N
)
2

Case 5:d(z,w) <ska, + % sk[d(Xn, Xn+1) + d(z,w)] < skan + % [{sd(xn, ) +sd(Xn+1, Z)}+d(z,W)]

= d(z,w) =0

2 2
(1—%jd (z,w)<ska, +%an_1+%an
d (z,w)gmaﬂw
sk
1->0
2
= d(z,w) =0

Therefore T hasa common fixed point in X.
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